版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江西省宜春第九中学数学九上期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点(2,-1)关于原点对称的点的坐标为()A. B. C. D.2.已知抛物线与二次函数的图像相同,开口方向相同,且顶点坐标为,它对应的函数表达式为()A. B.C. D.3.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称4.下列二次根式中,是最简二次根式的是()A. B. C. D.5.下列事件中,必然发生的事件是()A.随意翻到一本书的某页,这页的页码是奇数B.通常温度降到0℃以下,纯净的水结冰C.地面发射一枚导弹,未击中空中目标D.测量某天的最低气温,结果为-150℃6.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5707.如图是某个几何体的三视图,该几何体是()A.长方体 B.圆锥 C.三棱柱 D.圆柱8.如右图要测量小河两岸相对的两点、的距离,可以在小河边取的垂线上的一点,测得米,,则小河宽为()A.米 B.米 C.米 D.米9.下列四个点中,在反比例函数的图象上的是()A.(3,﹣2) B.(3,2) C.(2,3) D.(﹣2,﹣3)10.如图,AB是⊙O的直径,OC是⊙O的半径,点D是半圆AB上一动点(不与A、B重合),连结DC交直径AB与点E,若∠AOC=60°,则∠AED的范围为()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°11.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°12.已知关于的方程有一个根是,则的值是()A.-1 B.0 C. D.1二、填空题(每题4分,共24分)13.如图,在扇形中,,正方形的顶点是的中点,点在上,点在的延长线上,当正方形的边长为时,则阴影部分的面积为_________.(结果保留)14.如图,在边长为2的正方形ABCD中,以点D为圆心,AD长为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S1﹣S2的值为_____.(结果保留π)15.抛物线y=﹣3(x﹣1)2+2的开口向_____,对称轴为_____,顶点坐标为_____.16.已知关于x的一元二次方程x2+2x-a=0的两个实根为x1,x2,且,则a的值为.17.小北同学掷两面质地均匀硬币,抛5次,4次正面朝上,则掷硬币出现正面概率为_____.18.如图,半圆O的直径AB=18,C为半圆O上一动点,∠CAB=а,点G为△ABC的重心.则GO的长为__________.三、解答题(共78分)19.(8分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于点A(m,1)与点B(﹣1,﹣4).(1)求反比例函数与一次函数的解析式;(2)根据图象说明,当x为何值时,k1x+b﹣<0;(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求点P的坐标.20.(8分)某司机驾驶汽车从甲地去乙地,他以的平均速度用到达目的地.(1)当他按原路匀速返回时,汽车的速度与时间有怎样的函数关系?(2)如果该司机返回到甲地的时间不超过,那么返程时的平均速度不能小于多少?21.(8分)镇江某特产专卖店销售某种特产,其进价为每千克40元,若按每千克60元出售,则平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,平均每天的销售量增加10千克,若专卖店销售这种特产想要平均每天获利2240元,且销量尽可能大,则每千克特产应定价多少元?22.(10分)如图,二次函数y=ax2+bx﹣3的图象与x轴交于A、B与y轴交于点C,顶点坐标为(1,﹣4)(1)求二次函数解析式;(2)该二次函数图象上是否存在点M,使S△MAB=S△CAB,若存在,求出点M的坐标.23.(10分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).24.(10分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y1、y2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?25.(12分)我们规定:方程的变形方程为.例如:方程的变形方程为.(1)直接写出方程的变形方程;(2)若方程的变形方程有两个不相等的实数根,求的取值范围;(3)若方程的变形方程为,直接写出的值.26.如图,在中,,,夹边的长为6,求的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据关于原点的对称点,横、纵坐标都互为相反数”解答即可得答案.【详解】∵关于原点的对称点,横、纵坐标都互为相反数,∴点(2,-1)关于原点对称的点的坐标为(-2,1),故选:D.【点睛】本题主要考查了关于原点对称的点的坐标的特点,熟记关于原点的对称点,横、纵坐标都互为相反数是解题关键.2、D【分析】先根据抛物线与二次函数的图像相同,开口方向相同,确定出二次项系数a的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数的图像相同,开口方向相同,∵顶点坐标为∴抛物线的表达式为故选:D.【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键.3、D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.4、B【分析】根据最简二次根式概念即可解题.【详解】解:A.=,错误,B.是最简二次根式,正确,C.=3错误,D.=,错误,故选B.【点睛】本题考查了最简二次根式的概念,属于简单题,熟悉概念是解题关键.5、B【解析】解:A.随意翻到一本书的某页,这页的页码是奇数,是随机事件;B.通常温度降到0℃以下,纯净的水结冰,是必然事件;C.地面发射一枚导弹,未击中空中目标,是随机事件;D.测量某天的最低气温,结果为-150℃,是不可能事件.故选B.6、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.7、D【分析】首先根据俯视图排除正方体、三棱柱,然后跟主视图和左视图排除圆锥,即可得到结论.【详解】∵俯视图是圆,
∴排除A和C,
∵主视图与左视图均是长方形,
∴排除B,
故选:D.【点睛】本题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.8、A【分析】根据锐角三角函数的定义即可得出结论.【详解】解:在Rt△ACP中,tan∠ACP=∴米故选A.【点睛】此题考查是解直角三角形,掌握锐角三角函数的定义是解决此题的关键.9、A【分析】根据点在曲线上点的坐标满足方程的关系,将各点坐标代入验算,满足的点即为所求【详解】点(3,﹣2)满足,符合题意,点(3,2)不满足,不符合题意,点(2,3)不满足,不符合题意,点(﹣2,﹣3)不满足,不符合题意故选A.10、D【分析】连接BD,根据圆周角定理得出∠ADC=30°,∠ADB=90°,再根据三角形的外角性质可得到结论.【详解】如图,连接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故选D【点睛】本题考查了圆周角定理和三角形的外角性质.正确应用圆周角定理找出∠ADC=30°,∠ADB=90°是解题的关键.11、D【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.12、A【分析】把b代入方程得到关于a,b的式子进行求解即可;【详解】把b代入中,得到,∵,∴两边同时除以b可得,∴.故答案选A.【点睛】本题主要考查了一元二次方程的解,准确利用等式的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】连结OC,根据等腰三角形的性质可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积=-×4×4=4π-1,故答案为4π-1.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.14、π【分析】如图,设图中③的面积为S1.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S1.由题意:,可得S1﹣S2=π,故答案为π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.15、下直线x=1(1,2)【分析】根据y=a(x-h)2+k的性质即可得答案【详解】∵-3<0,∴抛物线的开口向下,∵y=﹣3(x﹣1)2+2是二次函数的顶点式,∴该抛物线的对称轴是直线x=1,顶点坐标为(1,2),故答案为:下,直线x=1,(1,2)【点睛】本题主要考查了二次函数的性质,熟练掌握二次函数的三种形式及性质是解题关键.16、1.【详解】解:∵关于x的一元二次方程x2+2x-a=0的两个实根为x1,x2,∴x1+x2=-2,x1x2=-a,∴∴a=1.17、【分析】根据抛掷一枚硬币,要么正面朝上,要么反面朝上,可以求得相应的概率.【详解】无论哪一次掷硬币,都有两种可能,即正面朝上与反面朝上,则掷硬币出现正面概率为:;故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、3【分析】根据三角形重心的概念直接求解即可.【详解】如图,连接OC,∵AB为直径,∴∠ACB=90,∵点O是直径AB的中点,重心G在半径OC,∴.故答案为:3.【点睛】本题考查了三角形重心的概念及性质、直径所对圆周角为直角、斜边上的中线等于斜边的一半,熟记并灵活运用三角形重心的性质是解题的关键.三、解答题(共78分)19、(1)y1=x﹣3;;(2)x<﹣1或0<x<4;(3)点P的坐标为或(1,4)或(2,2)【分析】(1)把B点坐标代入反比例函数解析式可求得k2的值,把点A(m,1)代入求得的反比例函数的解析式求得m,然后利用待定系数法即可求得一次函数的解析式;(2)直接由A、B的坐标根据图象可求得答案;(3)设点P的坐标为,则C(m,m﹣3),由△POC的面积为3,得到△POC的面积,求得m的值,即可求得P点的坐标.【详解】解:(1)将B(﹣1,﹣4)代入得:k2=4∴反比例函数的解析式为,将点A(m,1)代入y2得,解得m=4,∴A(4,1)将A(4,1)、B(﹣1,﹣4)代入一次函数y1=k1x+b得解得k1=1,b=﹣3∴一次函数的解析式为y1=x﹣3;(2)由图象可知:x<﹣1或0<x<4时,k1x+b﹣<0;(3)如图:设点P的坐标为,则C(m,m﹣3)∴,点O到直线PC的距离为m∴△POC的面积=,解得:m=5或﹣2或1或2,又∵m>0∴m=5或1或2,∴点P的坐标为或(1,4)或(2,2).【点睛】本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,三角形面积,熟练掌握待定系数法是解题的关键.20、(1);(2).【分析】(1)利用路程=平均速度×时间,进而得出汽车的速度v与时间t的函数关系;
(2)结合该司机必须在5个小时之内回到甲地,列出不等式进而得出速度最小值.【详解】(1)由题意得,两地路程为,∴汽车的速度与时间的函数关系为;(2)由,得,又由题意知:,∴,∵,∴,∴.答:返程时的平均速度不能小于1.【点睛】本题主要考查了反比例函数的应用,根据路程=平均速度×时间得出函数关系是解题关键.21、54【解析】设定价为x元,利用销售量×每千克的利润=2240元列出方程求解即可.【详解】设定价为x元.根据题意可得,解之得:,∵销售量尽可能大∴x=54答:每千克特产应定价54元.【点睛】本题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,表示出销售量和每千克的利润,再列出方程.22、(1)y=x2﹣2x﹣3;(2存在,点M的坐标为(1+,3),(1﹣,3)或(2,﹣3)【分析】(1)二次函数y=ax2+bx﹣3的顶点坐标为(1,﹣4),可以求得a、b的值,从而可以得到该函数的解析式;(2)根据(1)中求得的函数解析式可以得到点C的坐标,再根据S△MAB=S△CAB,即可得到点M的纵坐标的绝对值等于点C的纵坐标的绝对值,从而可以求得点M的坐标.【详解】解:(1)∵二次函数y=ax2+bx﹣3的顶点坐标为(1,﹣4),∴,得,∴该函数的解析式为y=x2﹣2x﹣3;(2)该二次函数图象上存在点M,使S△MAB=S△CAB,∵y=x2﹣2x﹣3=(x﹣3)(x+1),∴当x=0时,y=﹣3,当y=0时,x=3或x=﹣1,∵二次函数y=ax2+bx﹣3的图象与x轴交于A、B与y轴交于点C,∴点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(0,﹣3),∵S△MAB=S△CAB,点M在抛物线上,∴点M的纵坐标是3或﹣3,当y=3时,3=x2﹣2x﹣3,得x1=1+,x2=1﹣;当y=﹣3时,﹣3=x2﹣2x﹣3,得x3=0或x4=2;∴点M的坐标为(1+,3),(1﹣,3)或(2,﹣3).故答案为:(1)y=x2﹣2x﹣3;(2)存在,点M的坐标为(1+,3),(1﹣,3)或(2,﹣3).【点睛】本题考查了二次函数与方程,几何知识的综合运用.将函数知识与方程,几何知识有机地结合起来,这类试题难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质,定理和二次函数的知识.23、(1);(2)0.6【分析】(1)装有张卡片,其中有2张偶数,直接用公式求概率即可.(2)根据抽取结果画树状图或列表都可以,再根据树状图来求符合条件的概率.【详解】解:(1)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,5张卡片中偶数有2张,抽出偶数卡片的概率=(2)画树状如图概率为【点睛】本题考查了用概率的公式来求概率和树状统计图或列表统计图.24、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.【分析】(1)观察图象找出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装厂承包合同正规版模板
- 单位购房指标转让协议
- 2024年普通公路桥隧养护技术培训班结业考试试题
- 结算时应避免雷区
- 浙江省宁波市高三下学期二模技术试题-高中信息技术
- 安徽省阜阳市20232024学年高二下学期期末教学质量统测语文试卷
- 2024年安徽高考历史真题试卷
- 人教部编版八年级语文上册国行公祭为佑世界和平 【教学课件】
- 混搭风格装修合同
- 第七章-热力学基础
- 少数民族朝鲜族民俗介绍
- 2024年环磷酰胺原料药项目申请报告
- 鸟的天堂(课件)五年级上册语文
- 安全防护用品采购管理制度
- MOOC 陶瓷装饰·彩绘-无锡工艺职业技术学院 中国大学慕课答案
- 人教版《烛之武退秦师》课件(共42张)
- 中医定向透药治疗在临床上的应用试题及答案
- 老小区消防改造工程施工方案
- 《布的基本知识》课件
- (高清版)TDT 1031.6-2011 土地复垦方案编制规程 第6部分:建设项目
- 全国高中化学优质课大赛《氧化还原反应》课件
评论
0/150
提交评论