高中数学必修二阶段质量检测(二)教案课时训练练习教案课件_第1页
高中数学必修二阶段质量检测(二)教案课时训练练习教案课件_第2页
高中数学必修二阶段质量检测(二)教案课时训练练习教案课件_第3页
高中数学必修二阶段质量检测(二)教案课时训练练习教案课件_第4页
高中数学必修二阶段质量检测(二)教案课时训练练习教案课件_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

点、直线、平面之间的位置关系一、选择题(共10小题,每小题5分,共50分)1.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直解析:选DA若一组对边平行就决定了共面.在同一平面内,一组对边平行且相等的四边形一定是平行四边形,正确;B中同一平面的两条垂线互相平行,因而共面;C中这些直线都在同一个平面内即直线的垂面;把书本的书脊垂直放在桌上就可知D不正确.2.(2012·济南高一检测)下列说法正确的是()A.都与直线a相交的两条直线确定一个平面B.两条直线确定一个平面C.过一条直线的平面有无数多个D.两个相交平面的交线是一条线段解析:选C当这两条直线异面时不能确定平面,A错误.两条直线异面,则不能确定平面,B错误.两个相交平面的交线是一条直线,D错误.3.如图在四面体中,若直线EF和GH相交,则它们的交点一定()A.在直线DB上B.在直线AB上C.在直线CB上D.都不对解析:选A∵EF与GH相交,设EF∩GH=M,∴M∈EF,M∈GH.又∵EF⊂面ABD,GH⊂面BCD,∴M∈面ABD,M∈面BCD,又∵面ABD∩面BCD=BD,∴M∈BD,故选A.4.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线A.AC B.BDC.A1D D.A1D1解析:选BCE⊂平面ACC1A1,而BD⊥AC,BD⊥AA1,∴BD⊥平面ACC1A1,∴BD⊥5.(2013·河南平顶山高一调研)给定下列四个命题:①若两个平面有无数个公共点,则这两个平面重合;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是()A.①和② B.②和③C.③和④ D.②和④解析:选D①错,两个平面相交时,也有无数个公共点.③错,比如a⊥α,b⊂α,c⊂α,显然有a⊥b,a⊥c,但b与c也可能相交.故②④正确.6.正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是()A.eq\f(1,2) B.eq\f(\r(3),2)C.eq\f(\r(6),3) D.eq\f(\r(6),2)解析:选C连接BD1,则BD1∥EF,∠BD1A是直线AD1与EF所成的角.∵AB⊥AD1∴cos∠BD1A=eq\f(AD1,BD1)=eq\f(\r(6),3).7.在四面体ABCD中,已知棱AC的长为eq\r(2),其余各棱长都为1,则二面角A-CD-B的余弦值为()A.eq\f(1,2) B.eq\f(1,3)C.eq\f(\r(3),3) D.eq\f(\r(2),3)解析:选C取AC的中点E,取CD的中点F,则EF=eq\f(1,2),BE=eq\f(\r(2),2),BF=eq\f(\r(3),2),∴△BEF为直角三角形,cosθ=eq\f(EF,BF)=eq\f(\r(3),3).8.(2013·湖南师大附中高一检测)设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中正确的说法个数是()A.3 B.2C.1 D.0解析:选B垂直于同一平面的两个平面不一定平行,故①错误;由面面平行的性质知②正确;借助于三棱柱可知③正确.9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:选D易知:△BCD中,∠DBC=45°,∴∠BDC=90°.又平面ABD⊥平面BCD,而CD⊥BD,∴CD⊥平面ABD,∴AB⊥CD,而AB⊥AD,∴AB⊥平面ACD,∴平面ABC⊥平面ACD.10.已知:平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC、BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度()A.13 B.eq\r(151)C.12eq\r(3) D.15解析:选A如图,连AD.∵α⊥β,∴AC⊥β,DB⊥α.在Rt△ABD中,AD=eq\r(AB2+BD2)=eq\r(42+122)=eq\r(160).在Rt△CAD中,CD=eq\r(AC2+AD2)=eq\r(32+160)=13.二、填空题(共4小题,每小题5分,共20分)11.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的即可).答案:BM⊥PC(其他合理即可)12.长方体ABCD-A1B1C1D1中,MN在平面BCC1B1内,MN⊥BC于M,则MN与AB解析:由平面BCC1B1⊥面ABCD知MN⊥面ABCD.∴MN⊥AB.答案:垂直13.(2012·天津高一检测)在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=eq\r(3),则异面直线AD与BC所成角的大小为________.解析:取AC中点M,连接EM,FM,F为DC中点,M为AC中点,∴FM∥AD,且FM=eq\f(1,2)AD=1,同理EM∥BC且EM=eq\f(1,2)BC=1.△EMF中作MN⊥EF于N.Rt△MNE中,EM=1,EN=eq\f(\r(3),2),∴sin∠EMN=eq\f(\r(3),2),∠EMN=60°,∴∠EMF=120°,∴AD与BC所成角为60°.答案:60°14.将正方形ABCD沿对角线BD折成直二面角A—BD—C,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;说法正确的命题序号是________.解析:如图所示,①取BD中点E,连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC⊥BD,故①正确.②设正方形的边长为a,则AE=CE=eq\f(\r(2),2)a.由①知∠AEC=90°是直二面角A—BD—C的平面角,且∠AEC=90°,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD所成的角,而∠ABE=45°,所以③不正确.答案:①②三、解答题(共4小题,共50分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)(2012·宁德高一检测)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.证明:(1)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.又CD⊥PC,PA∩PC=P,∴CD⊥平面PAC.(2)∵AD∥BC,AB⊥BC,AB=BC=1,∴∠BAC=45°,∠CAD=45°,AC=eq\r(2).∵CD⊥平面PAC,∴CD⊥CA,∴AD=2.又E为AD的中点,∴AE=BC=1,∴四边形ABCE是正方形,∴CE∥AB.又AB⊂平面PAB,CE⊄平面PAB,∴CE∥平面PAB.16.(本小题满分12分)(2012·江西高考)如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4eq\r(2),DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合于点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.解:(1)证明:由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得EG⊥GF.又因为CF⊥底面EGF,可得CF⊥EG,即EG⊥平面CFG,所以平面DEG⊥平面CFG.(2)过点G作GO垂直于EF,GO即为四棱锥G-EFCD的高,所以所求体积为eq\f(1,3)S长方形DEFC·GO=eq\f(1,3)×4×5×eq\f(12,5)=16.17.(本小题满分12分)如图所示,正方体的棱长为1,B′C∩BC′=O,求:(1)AO与A′C′所成角的度数;(2)AO与平面ABCD所成角的正切值;(3)平面AOB与平面AOC所成角的度数.解:(1)∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC.∵OC⊥OB,AB⊥平面BC′,∴OC⊥AB.又AB∩BO=B,∴OC⊥平面ABO.又OA⊂平面ABO,∴OC⊥OA.在Rt△AOC中,OC=eq\f(\r(2),2),AC=eq\r(2),sin∠OAC=eq\f(OC,AC)=eq\f(1,2),∴∠OAC=30°.即AO与A′C′所成角的度数为30°.(2)如图所示,作OE⊥BC于E,连接AE.∵平面BC′⊥平面ABCD,∴OE⊥平面ABCD,∠OAE为OA与平面ABCD所成的角.在Rt△OAE中,OE=eq\f(1,2),AE=eq\r(12+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2)=eq\f(\r(5),2),∴tan∠OAE=eq\f(OE,AE)=eq\f(\r(5),5).(3)∵OC⊥OA,OC⊥OB,OA∩OB=O.∴OC⊥平面AOB.又∵OC⊂平面AOC,∴平面AOB⊥平面AOC.即平面AOB与平面AOC所成角的度数为90°.18.(本小题满分14分)如图所示,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD(1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.证明:(1)∵AB=2AD,∠BAD=60°,∴BD⊥AD.又∵D1D⊥平面ABCD,∴D1D⊥DB.又AD∥D1D=D,∴BD⊥平面A1ADD1,∴AA1⊥BD.(2)如图,连接AC,A1C1,AC交BD于O点,连接A1O∵AB=2AD,AD=AB1,∴A1B1=eq\f(1,2)AB.∵四棱台底面ABCD是平行四边形,∴A1C1綊eq\f(1,2)AC,∴A1C1綊OC.∴四边形A1OCC1为平行四边形,∴C1C∥A1O又A1O⊂平面A1BD,C1C⊄平面A1BD∴CC1∥平面A1BD.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

活动过程:

1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”

主持人口述谜语:

“双手抓不起,一刀劈不开,

煮饭和洗衣,都要请它来。”

主持人问:“谁知道这是什么?”生答:“水!”

一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”

主持人:我宣布:“水”是万物之源主题班会现在开始。

水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”

甲:如果没有水,我们人类就无法生存。

小熊说:我们动物可喜欢你了,没有水我们会死掉的。

花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。

主持人:下面请听快板《水的用处真叫大》

竹板一敲来说话,水的用处真叫大;

洗衣服,洗碗筷,洗脸洗手又洗脚,

煮饭洗菜又沏茶,生活处处离不开它。

栽小树,种庄稼,农民伯伯把它夸;

鱼儿河马大对虾,日日夜夜不离它;

采煤发电要靠它,京城美化更要它。

主持人:同学们,听完了这个快板,你们说水的用处大不大?

甲说:看了他们的快板表演,我知道日常生活种离不了水。

乙说:看了表演后,我知道水对庄稼、植物是非常重要的。

丙说:我还知道水对美化城市起很大作用。

2.主持人:水有这么多用处,你们该怎样做呢?

(1)(生):我要节约用水,保护水源。

(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。

(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。

(4)(生):我要用洗脚水冲厕所。

3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。

(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。

(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。

(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)

(4)一生说:主持人我们想给大家表演一个小品行吗?

主持人:可以,大家欢迎!请看小品《这又不是我家的》

大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”

旁白:“那又是谁家的呢?”

主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?

甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。

乙:上次我去厕所看见水龙头没关就主动关上了。

主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?

齐:主动关好。

小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?

主持人:可以。

小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?

答:我要做节水的主人,不浪费一滴水。

小记者:请这位同学谈谈好吗?

答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。

小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见!

水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天!

主持人:你们还有发言的吗?

答:有。

生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。

动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的!

花草树木跑上场说:我们也不会忘记你的贡献!

水伯伯:(手舞足蹈地跳起了舞蹈)……同学们的笑声不断。

主持人:水伯伯,您这是干什么呢?

水伯伯:因为我太高兴了,今后还请你们多关照我呀!

主持人:水伯伯,请放心,今后我们一定会做得更好!再见!

4.主持人:大家欢迎老师讲话!

同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。

5.主持人宣布:“水”是万物之源主题班会到此结束。

6.活动效果:

此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵

活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

活动过程:

1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”

主持人口述谜语:

“双手抓不起,一刀劈不开,

煮饭和洗衣,都要请它来。”

主持人问:“谁知道这是什么?”生答:“水!”

一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”

主持人:我宣布:“水”是万物之源主题班会现在开始。

水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”

甲:如果没有水,我们人类就无法生存。

小熊说:我们动物可喜欢你了,没有水我们会死掉的。

花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。

主持人:下面请听快板《水的用处真叫

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论