江苏省南京市三区联盟2023年数学八上期末学业水平测试试题含解析_第1页
江苏省南京市三区联盟2023年数学八上期末学业水平测试试题含解析_第2页
江苏省南京市三区联盟2023年数学八上期末学业水平测试试题含解析_第3页
江苏省南京市三区联盟2023年数学八上期末学业水平测试试题含解析_第4页
江苏省南京市三区联盟2023年数学八上期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市三区联盟2023年数学八上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C′全等的是()A.AB=A′B′,AC=A′C′,BC=B′C′ B.∠A=∠A′,∠B=∠B′,AC=A′C′C.AB=A′B′,AC=A′C′,∠A=∠A′ D.AB=A′B′,BC=B′C′,∠C=∠C′2.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用表示,左下角方子的位置用表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是A. B. C. D.3.下列计算正确的是()A. B.C. D.4.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B5.下列算式中,计算结果等于的是()A. B. C. D.6.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b27.等腰三角形的一个内角为50°,它的顶角的度数是()A.40° B.50° C.50°或40° D.50°或80°8.如图,是的角平分线,,交于点.已知,则的度数为()A. B.C. D.9.满足下列条件的中,不是直角三角形的是A. B.C. D.10.语句“的与的和不超过”可以表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度12.若点和点关于x轴对称,则的值是____.13.如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)证明:在运动过程中,点D是线段PQ的中点;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.14.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.15.对于非零的两个实数a、b,规定a⊕b=1b-1a,若2⊕(2x﹣1)=1,则16.在△ABC中,∠ACB=90°,∠B=60°,AB=8,点D是直线BC上动点,连接AD,在直线AD的右侧作等边△ADE,连接CE,当线段CE的长度最小时,线段CD的长度为____.17.的立方根是____.18.如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.三、解答题(共66分)19.(10分)如图,平分,平分外角,.(1)求证:;(2)若,求的度数.20.(6分)网购是现在人们常用的购物方式,通常网购的商品为防止损坏会采用盒子进行包装,均是容积为立方分米无盖的长方体盒子(如图).(1)图中盒子底面是正方形,盒子底面是长方形,盒子比盒子高6分米,和两个盒子都选用相同的材料制作成侧面和底面,制作底面的材料1.5元/平方分米,其中盒子底面制作费用是盒子底面制作费用的3倍,当立方分米时,求盒子的高(温馨提示:要求用列分式方程求解).(2)在(1)的条件下,已知盒子侧面制作材料的费用是0.5元/平方分米,求制作一个盒子的制作费用是多少元?(3)设的值为(2)中所求的一个盒子的制作费用,请分解因式;.21.(6分)已知:如图,点E在直线DF上,点B在直线AC上,.求证:22.(8分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+=1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证:CF=BC;②直接写出点C到DE的距离.23.(8分)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下表:命中环数78910甲命中相应环数的次数2201乙命中相应环数的次数1310(1)求甲、乙两人射击成绩的平均数;(2)甲、乙两人中,谁的射击成绩更稳定些?请说明理由.24.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.25.(10分)如图,在平面直角坐标系中,已知四边形的顶点,.(1)画出四边形关于轴的对称图形;(2)请直接写出点关于轴的对称点的坐标:.26.(10分)在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据全等三角形的判定方法对各项逐一判断即得答案.【详解】解:A、AB=A′B′,AC=A′C′,BC=B′C′,根据SSS可判定△ABC和△A′B′C′全等,本选项不符合题意;B、∠A=∠A′,∠B=∠B′,AC=A′C′,根据AAS可判定△ABC和△A′B′C′全等,本选项不符合题意;C、AB=A′B′,AC=A′C′,∠A=∠A′,根据SAS可判定△ABC和△A′B′C′全等,本选项不符合题意;D、AB=A′B′,BC=B′C′,∠C=∠C′,这是SSA,不能判定△ABC和△A′B′C′全等,本选项符合题意.故选:D.【点睛】本题考查了全等三角形的判定,属于应知应会题型,熟练掌握全等三角形的判定方法是解题关键.2、B【解析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义确定放的位置.【详解】解:棋盘中心方子的位置用表示,则这点所在的横线是x轴,左下角方子的位置用,则这点向右两个单位所在的纵线是y轴,则小莹将第4枚圆子放的位置是时构成轴对称图形.故选:B.【点睛】本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.3、B【分析】分别根据对应的法则逐一分析即可【详解】解:A.,故本选项不符合题意;B.,故本选项符合题意;C.,故本选项不符合题意;D.,故本选项不符合题意;故选:B【点睛】本题考查了积的乘方、平方差公式、完全平方公式、同底数幂的乘法等知识点,能正确求出每个式子的值是解此题的关键.4、A【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【详解】∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、角相等是解题的关键.5、B【分析】根据同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘,等法则进行计算即可得出答案.【详解】A.,所以A不符合题意B.,所以B符合题意C.,所以C不符合题意D.,所以D不符合题意.故选B.【点睛】本题考查的是整式的运算,本题的关键是掌握整式运算的法则.6、C【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.【详解】解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即,乙图中阴影部分长方形的长为,宽为,阴影部分的面积为,根据两个图形中阴影部分的面积相等可得.故选:C.【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键.7、D【分析】根据50°是顶角的度数或底角的度数分类讨论,然后结合三角形的内角和定理即可得出结论.【详解】解:①若顶角的度数为50°时,此时符合题意;②若底角的度数为50°时,则等腰三角形的顶角为:180°-50°-50°=80°综上所述:它的顶角的度数是50°或80°故选D.【点睛】此题考查的是等腰三角形的性质和三角形的内角和定理,掌握等边对等角和分类讨论的数学思想是解决此题的关键.8、B【分析】根据平行线的性质和角平分线的性质即可求解.【详解】解:∵∴∠ACB=∵是的角平分线∴=∠BCE=故选:B【点睛】此题主要考查平行线的性质和角平分线的性质,灵活运用性质解决问题是解题关键.9、D【分析】根据勾股定理的逆定理可判断A、B两项,根据三角形的内角和定理可判断C、D两项,进而可得答案.【详解】解:A、∵,∴,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;B、由可设,∵,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;C、∵,∴,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,所以△ABC是直角三角形,本选项不符合题意;D、由可设,∵∠A+∠B+∠C=180°,∴=180°,解得:,∴,所以△ABC不是直角三角形,本选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理和三角形的内角和定理,属于基础题型,熟练掌握勾股定理的逆定理是解题的关键.10、A【分析】x的即x,不超过1是小于或等于1的数,由此列出式子即可.【详解】“x的与x的和不超过1”用不等式表示为x+x≤1.故选A.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.二、填空题(每小题3分,共24分)11、80.【分析】根据平行线的性质求出∠C,根据三角形外角性质求出即可.【详解】∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故答案为80.12、【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求出m、n的值,再计算(-n)m的值【详解】解:∵A(m,n)与点B(3,2)关于x轴对称,

∴m=3,n=2,

∴(-n)m=(-2)3=-1.

故答案为:-1【点睛】此题主要考查了关于x轴、y轴对称的点的坐标,解决此类题的关键是掌握好对称点的坐标规律:

(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;

(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;

(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13、(1)见解析;(2)AP=2;(1)DE的长不变,定值为1.【分析】(1)过P作PF∥QC交AB于F,则是等边三角形,根据AAS证明三角形全等即可;(2)想办法证明BD=DF=AF即可解决问题;(1)想办法证明即可解决问题.【详解】(1)证明:过P作PF∥QC交AB于F,则是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在和中,,∴,∴DQ=DP;(2)解:∵,∴BD=DF,∵,∴,∴,∴AP=2;(1)解:由(2)知BD=DF,∵是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=1,为定值,即DE的长不变.【点睛】本题主要考查了三角形全等的性质及判定,以及三角形中的动点问题,熟练掌握相关几何综合的解法是解决本题的关键.14、(1,0)【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE=D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:,解得,,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.15、56【分析】先根据规定运算把方程转化为一般形式,然后把分式方程转化为整式方程求解,再进行检验即可得解.【详解】解:2⊕(2x﹣1)=1可化为12x-1﹣12方程两边都乘以2(2x﹣1)得,2﹣(2x﹣1)=2(2x﹣1),解得x=56检验:当x=56时,2(2x﹣1)=2(2×56﹣1)=4所以,x=56即x的值为56故答案为56【点睛】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.16、1.【分析】以AC为边作等边△ACF,连接DF,可证△ACE≌△AFD,可得CE=DF,则DF⊥CB时,DF的长最小,即DE的长最小,即可求解.【详解】如图,以AC为边作等边△ACF,连接DF.∵∠ACB=90°,∠B=10°,∴∠BAC=30°,∵AB=8,∴BC=4,∴AC==4,∵△ACF是等边三角形,∴CF=AC=AF=4,∠BCF=30°.∵△ADE是等边三角形,∴AD=AE,∠FAC=∠DAE=10°,∴∠FAD=∠CAE,在△ACE和△AFD中,,∴△ACE≌△AFD(SAS),∴CE=DF,∴DF⊥BC时,DF的长最小,即CE的长最小.∵∠FCD'=90°﹣10°=30°,D'F⊥CB,∴,∴CD'==1.故答案为:1.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.17、.【分析】利用立方根的定义即可得出结论【详解】的立方根是.故答案为:【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.一个正数有两个平方根,并且它们是一对相反数.18、1【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为30,AB=10,∴×10×CE=30,∴CE=1.即CM+MN的最小值为1.故答案为1.【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.三、解答题(共66分)19、(1)详见解析;(2).【分析】(1)由已知条件可得,根据同位角相等,两直线平行即可得;(2)根据角平分线的定义,可得出,,再根据外角的性质可得与,通过角度的计算可得出答案.【详解】(1)证明:∵平分外角,∴,又∵,∴,∴.(2)解:∵BE、CE分别是△ABC内角∠ABC和外角∠ACD的平分线,∴,,又∵∠ACD是△ABC的外角,∴,∴∵∠ECD是△BCE的外角,∴∴,∵∠A=50°,∴.【点睛】本题考查了角平分线的定义和三角形外角的性质,熟练运用三角形外角的性质进行角度的计算是解题的关键.20、(1)B盒子的高为3分米;(2)制作一个盒子的制作费用是240元;(3).【分析】(1)先以“盒子底面制作费用是盒子底面制作费用的3倍”为等量关系列出分式方程,再求解分式方程,最后检验作答即得.(2)先分别求出A盒子的底面积和四个侧面积,再求出各个面的制作费用之和即得.(3)先依据(2)写出多项式,再应用十字相乘法因式分解即得.【详解】(1)设B盒子的高为h分米.由题意得:解得:经检验得:是原分式方程的解.答:B盒子的高为3分米.(2)∵由(1)得B盒子的高为3分米∴A盒子的高为:(分米)∴A盒子的底面积为:(平方分米)∴A盒子的底边长为:(分米)∴A盒子的侧面积为:(平方分米)∵底面的材料1.5元/平方分米,侧面制作材料的费用是0.5元/平方分米∴制作一个盒子的制作费用是:(元)答:制作一个盒子的制作费用是240元.(3)∵由(2)得:∴∴故答案为:.【点睛】本题考查分式方程的实际应用、整式的“十字相乘法”因式分解,实际问题找等量关系是解题关键,注意分式方程求解后的检验是易遗漏点;因式分解注意观察形式选择合适的方法,熟练掌握十字相乘法因式分解是解题关键,21、见解析.【解析】先证明BD∥CE,得出同旁内角互补∠3+∠C=180°,再由已知得出∠4+∠C=180°,证出AC∥DF,即可得出结论.【详解】证明:∵∠1=∠2,∠2=∠DGF

∴∠1=∠DGF

∴BD∥CE

∴∠3+∠C=180°

又∵∠3=∠4

∴∠4+∠C=180°

∴AC∥DF

∴∠A=∠F.【点睛】本题考查平行线的判定与性质、对顶角相等的性质;熟练掌握平行线的判定与性质是解决问题的关键,注意两者的区别.22、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.【分析】(2)可得(a−2)2+=2,由非负数的性质可得出答案;

(2)分两种情况:∠BAC=92°或∠ABC=92°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;

(3)①如图3,过点C作CL⊥y轴于点L,则CL=2=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;

②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=2.【详解】(2)∵a2−4a+4+=2,

∴(a−2)2+=2,

∵(a-2)2≥2,≥2,

∴a-2=2,2b+2=2,

∴a=2,b=-2;

(2)由(2)知a=2,b=-2,

∴A(2,2),B(-2,2),

∴OA=2,OB=2,

∵△ABC是直角三角形,且∠ACB=45°,

∴只有∠BAC=92°或∠ABC=92°,

Ⅰ、当∠BAC=92°时,如图2,

∵∠ACB=∠ABC=45°,

∴AB=CB,

过点C作CG⊥OA于G,

∴∠CAG+∠ACG=92°,

∵∠BAO+∠CAG=92°,

∴∠BAO=∠ACG,

在△AOB和△BCP中,

∴△AOB≌△CGA(AAS),

∴CG=OA=2,AG=OB=2,

∴OG=OA-AG=2,

∴C(2,2),

Ⅱ、当∠ABC=92°时,如图2,

同Ⅰ的方法得,C(2,-2);

即:满足条件的点C(2,2)或(2,-2)

(3)①如图3,由(2)知点C(2,-2),

过点C作CL⊥y轴于点L,则CL=2=BO,

在△BOE和△CLE中,

∴△BOE≌△CLE(AAS),

∴BE=CE,

∵∠ABC=92°,

∴∠BAO+∠BEA=92°,

∵∠BOE=92°,

∴∠CBF+∠BEA=92°,

∴∠BAE=∠CBF,

在△ABE和△BCF中,

∴△ABE≌△BCF(ASA),

∴BE=CF,

∴CF=BC;

②点C到DE的距离为2.

如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,

由①知BE=CF,

∵BE=BC,

∴CE=CF,

∵∠ACB=45°,∠BCF=92°,

∴∠ECD=∠DCF,

∵DC=DC,

∴△CDE≌△CDF(SAS),

∴∠BAE=∠CBF,

∴CK=CH=2.【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23、(1)甲、乙两人射击成绩的平均数均为8环;(2)乙.【分析】(1)直接利用算术平均数的计算公式计算即可;(2)根据方差的大小比较成绩的稳定性.【详解】(1)(环);=8(环);(2)∵甲的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论