版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省定远二中2024届高三下学期第四次周考(线上)数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.2.已知向量,则向量在向量方向上的投影为()A. B. C. D.3.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为()A. B. C. D.4.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.5.已知复数,则的虚部是()A. B. C. D.16.已知平面向量满足,且,则所夹的锐角为()A. B. C. D.07.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.8.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为()A. B. C. D.9.已知等差数列的前n项和为,,则A.3 B.4 C.5 D.610.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.11.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H12.设集合,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则______,______.14.三所学校举行高三联考,三所学校参加联考的人数分别为160,240,400,为调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在学校抽取的数学成绩的份数为30,则抽取的样本容量为____________.15.已知实数,满足则的取值范围是______.16.已知实数,对任意,有,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.(Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.18.(12分)十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下:表1:新农合门诊报销比例医院类别村卫生室镇卫生院二甲医院三甲医院门诊报销比例60%40%30%20%根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下:表2:李村一个结算年度门诊就诊情况统计表医院类别村卫生室镇卫生院二甲医院三甲医院一个结算年度内各门诊就诊人次占李村总就诊人次的比例70%10%15%5%如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元.若李村一个结算年度内去门诊就诊人次为2000人次.(Ⅰ)李村在这个结算年度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少?(Ⅱ)如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)的分布列与期望.19.(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.20.(12分)在中,内角的对边分别是,已知.(1)求的值;(2)若,求的面积.21.(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值.22.(10分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,,,,,的大小关系.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【题目详解】解:,又解得,所以故选:D【题目点拨】本题考查了平面向量的基本定理及其意义,属于基础题.2、A【解题分析】
投影即为,利用数量积运算即可得到结论.【题目详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【题目点拨】本题主要考察了向量的数量积运算,难度不大,属于基础题.3、C【解题分析】
根据等差数列的性质设出,,,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【题目详解】由已知,,成等差数列,设,,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,,∴离心率.故选:C【题目点拨】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.4、B【解题分析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.5、C【解题分析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【题目详解】,,所以的虚部为.故选:C【题目点拨】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.6、B【解题分析】
根据题意可得,利用向量的数量积即可求解夹角.【题目详解】因为即而所以夹角为故选:B【题目点拨】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.7、A【解题分析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【题目详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【题目点拨】本题考查组合的应用和概率的计算,属于基础题.8、B【解题分析】
根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【题目详解】.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【题目点拨】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.9、C【解题分析】
方法一:设等差数列的公差为,则,解得,所以.故选C.方法二:因为,所以,则.故选C.10、B【解题分析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【题目详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【题目点拨】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.11、C【解题分析】
由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【题目详解】由,所以,对应点.故选:C【题目点拨】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.12、B【解题分析】
直接进行集合的并集、交集的运算即可.【题目详解】解:;∴.故选:B.【题目点拨】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【题目详解】,,,.故答案为:;.【题目点拨】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大.14、【解题分析】
某层抽取的人数等于该层的总人数乘以抽样比.【题目详解】设抽取的样本容量为x,由已知,,解得.故答案为:【题目点拨】本题考查随机抽样中的分层抽样,考查学生基本的运算能力,是一道容易题.15、【解题分析】
根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.【题目详解】.由题意,画出约束条件表示的平面区域如下图所示,令,则如图所示,图中直线所示的两个位置为的临界位置,根据几何关系可得与轴的两个交点分别为,所以的取值范围为.故答案为:【题目点拨】本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.16、-1【解题分析】
由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解.【题目详解】由,且,则,又,所以,令得:,所以,故答案为:.【题目点拨】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】试题分析:(1)依题意,由点到直线的距离公式可得,又有,联立可求离心率;(2)由(1)设椭圆方程,再设直线方程,与椭圆方程联立,求得,令,可得,即得椭圆方程.试题解析:(Ⅰ)过点的直线方程为,则原点到直线的距离,由,得,解得离心率.(Ⅱ)由(1)知,椭圆的方程为.依题意,圆心是线段的中点,且.易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得.从而.于是.由,得,解得.故椭圆的方程为.18、(Ⅰ);(Ⅱ)的发分布列为:X2060140400P0.70.10.150.05期望.【解题分析】
(Ⅰ)由表2可得去各个门诊的人次比例可得2000人中各个门诊的人数,即可知道去三甲医院的总人数,又有60岁所占的百分比可得60岁以上的人数,进而求出任选2人60岁以上的概率;(Ⅱ)由去各门诊结算的平均费用及表1所报的百分比可得随机变量的可能取值,再由概率可得的分布列,进而求出概率.【题目详解】解:(Ⅰ)由表2可得李村一个结算年度内去门诊就诊人次为2000人次,分别去村卫生室、镇卫生院、二甲医院、三甲医院人数为,,,,而三甲医院门诊就诊的人次中,60岁以上的人次占了,所以去三甲医院门诊就诊的人次中,60岁以上的人数为:人,设从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的事件记为,则;(Ⅱ)由题意可得随机变量的可能取值为:,,,,,,,,所以的发分布列为:X2060140400P0.70.10.150.05所以可得期望.【题目点拨】本题主要考查互斥事件、随机事件的概率计算公式、分布列及其数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.19、(1);(2)①;②证明见解析.【解题分析】
(1)由条件可得,结合等差数列的定义和通项公式、求和公式,即可得到所求;(2)①若,可令,运用已知条件和等比数列的性质,即可得到所求充要条件;②当,,,由等比数列的定义和不等式的性质,化简变形,即可得到所求结论.【题目详解】解:(1),,且为非零常数,,,可得,可得数列的首项为,公差为的等差数列,可得,前项和为;(2)①若,可令,,且,即,,,,对任意的,,可得,可得,,数列是等比数列,则,,可得,,即,又,即有,即,数列是等比数列的充要条件为;②证明:对任意的,,,,,当,,,可得,即以为首项、为公比的等比数列;同理可得以为首项、为公比的等比数列;对任意的,,可得,即有,所以对,,,可得,,即且,则,可令,故数列,,,,,,,,,是以为首项,为公比的等比数列,其中.【题目点拨】本题考查新定义的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法和推理、运算能力,属于难题.20、(1);(2).【解题分析】
(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,,利用三角形内角和定理可得,由三角形面积公式可得结果.【题目详解】(1)由题意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【题目点拨】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.21、(1),;(2).【解题分析】
(1)利用极坐标和直角坐标的互化公式,即得解;(2)设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,可得点在以为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行贷款委托代理合同(2篇)
- 巴西课件 湘教版
- 人教版南辕北辙课件
- 苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题
- 老舍《茶馆》课件
- 外科护理课件
- 基层教育 课件
- 西京学院《中华才艺》2023-2024学年第一学期期末试卷
- 西京学院《外国文学》2021-2022学年第一学期期末试卷
- 西华师范大学《中外电影史》2021-2022学年期末试卷
- GB 40165-2021固定式电子设备用锂离子电池和电池组安全技术规范
- 音标3元音字母e发音用上课
- 深圳市失业人员停止领取失业保险待遇申请表空表
- DJI 产品交付理论试题
- 第十三章医疗服务管理课件
- 工程质保期满验收报告模板
- 《中国当代文艺思潮》导论文艺思潮的基本概念
- 高考地理复习:过程类推理综合题解析-以地貌景观题为例
- 2023年南方出版传媒股份有限公司招聘笔试模拟试题及答案解析
- 初中语文阅读专题教学课件
- 教育调查研究课件
评论
0/150
提交评论