版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙浏阳市2024届高三高考仿真模拟卷数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数,是虚数单位,则下列结论正确的是A. B.的共轭复数为C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限2.已知的展开式中的常数项为8,则实数()A.2 B.-2 C.-3 D.33.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.4.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.5.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q6.如图,在等腰梯形中,,,,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是()A. B.C. D.7.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为()A. B. C. D.8.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.9.已知若在定义域上恒成立,则的取值范围是()A. B. C. D.10.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()A. B. C. D.11.若函数有两个极值点,则实数的取值范围是()A. B. C. D.12.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()A.48 B.63 C.99 D.120二、填空题:本题共4小题,每小题5分,共20分。13.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.14.如图,在梯形中,∥,分别是的中点,若,则的值为___________.15.数列满足,则,_____.若存在n∈N*使得成立,则实数λ的最小值为______16.已知,则_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.18.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.19.(12分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,.(1)求数列的通项公式;(2)若,求最大的正整数,使得.20.(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.21.(12分)在中,角A、B、C的对边分别为a、b、c,且.(1)求角A的大小;(2)若,的平分线与交于点D,与的外接圆交于点E(异于点A),,求的值.22.(10分)“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.【题目详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.【题目点拨】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.2、A【解题分析】
先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【题目详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【题目点拨】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.3、C【解题分析】
由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【题目详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.【题目点拨】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.4、D【解题分析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【题目详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【题目点拨】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.5、C【解题分析】
解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C6、A【解题分析】
由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积.【题目详解】由题意等腰梯形中,又,∴,是靠边三角形,从而可得,∴折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,,,外接球球心必在高上,设外接球半径为,即,∴,解得,球体积为.故选:A.【题目点拨】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体.7、B【解题分析】
首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【题目详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【题目点拨】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.8、B【解题分析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【题目详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【题目点拨】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.9、C【解题分析】
先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【题目详解】,先解不等式.①当时,由,得,解得,此时;②当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,,则,此时;当时,,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,,解得.因此,实数的取值范围是.故选:C.【题目点拨】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.10、A【解题分析】
求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率.【题目详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得.故选A.【题目点拨】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.11、A【解题分析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.12、C【解题分析】
观察规律得根号内分母为分子的平方减1,从而求出n.【题目详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【题目点拨】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【题目详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.【题目点拨】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.14、【解题分析】
建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.【题目详解】以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则,所以,,由,得,即,又,所以,故,,所以.故答案为:2【题目点拨】本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.15、【解题分析】
利用“退一作差法”求得数列的通项公式,将不等式分离常数,利用商比较法求得的最小值,由此求得的取值范围,进而求得的最小值.【题目详解】当时两式相减得所以当时,满足上式综上所述存在使得成立的充要条件为存在使得,设,所以,即,所以单调递增,的最小项,即有的最小值为.故答案为:(1).(2).【题目点拨】本小题主要考查根据递推关系式求数列的通项公式,考查数列单调性的判断方法,考查不等式成立的存在性问题的求解策略,属于中档题.16、【解题分析】
化简得,利用周期即可求出答案.【题目详解】解:,∴函数的最小正周期为6,∴,,故答案为:.【题目点拨】本题主要考查三角函数的性质的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】
(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【题目详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,∴为常数列,且,∴,∴∴【题目点拨】本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.18、(1)(2)答案见解析(3)答案见解析【解题分析】
(1)设曲线在点,处的切线的斜率为,可求得,,利用直线的点斜式方程即可求得答案;(2)由(Ⅰ)知,,分时,,三类讨论,即可求得各种情况下的的单调区间为;(3)分与两类讨论,即可判断函数的零点个数.【题目详解】(1),,设曲线在点,处的切线的斜率为,则,又,曲线在点,处的切线方程为:,即;(2)由(1)知,,故当时,,所以在上单调递增;当时,,;,,;的递减区间为,递增区间为,;当时,同理可得的递增区间为,递减区间为,;综上所述,时,单调递增为,无递减区间;当时,的递减区间为,递增区间为,;当时,的递增区间为,递减区间为,;(3)当时,恒成立,所以无零点;当时,由,得:,只有一个零点.【题目点拨】本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题.19、(1)(2)1008【解题分析】
(1)用基本量求出首项和公差,可得通项公式;(2)用裂项相消法求得和,然后解不等式可得.【题目详解】解:(1)由题得,即解得或因为数列为各项均为整数,所以,即(2)令所以即,解得所以的最大值为1008【题目点拨】本题考查等差数列的通项公式、前项和公式,考查裂项相消法求数列的和.在等差数列和等比数列中基本量法是解题的基本方法.20、(1)或;(2)或.【解题分析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《学前教育法》是学前教育工作者的新征程
- 中考物理复习主题单元4第7课时运动的世界课件
- 第一章集合与常用逻辑用语考点三充分条件与必要条件教案
- 《玛丽哭了》教案讲解
- 员工灾难救助与重建指导
- 学校地下车库建设合同
- 供水管道维修班组施工合同
- 武汉市足球场租赁合同
- 保安巡逻安全操作手册
- 校园安全保卫工作手册
- 第7章国际资本流动与国际金融危机
- 藏传佛教英文词汇
- 模拟法庭刑事案例解析
- 人像摄影构图(PPT)
- 铁路杂费收费项目和标准
- 丹麦InteracousticsAD226系列临床诊断型听力计使用手册
- 万达会计综合实训
- 糖尿病健康知识宣教PPT课件
- 廉政风险防控台账
- 沪科版七年级上册数学总复习知识点考点
- 公路工程安全技术交底(完整版)
评论
0/150
提交评论