版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市金山区上海交大南洋中学高三下学期第一次模拟考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i2.若复数满足,复数的共轭复数是,则()A.1 B.0 C. D.3.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.A.360 B.240 C.150 D.1204.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有()A.①② B.①④ C.②③ D.①②④5.若直线的倾斜角为,则的值为()A. B. C. D.6.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,27.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为()A. B. C. D.8.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知,则“直线与直线垂直”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.11.复数满足,则复数等于()A. B. C.2 D.-212.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________.14.已知函数,且,,使得,则实数m的取值范围是______.15.已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是__________.16.已知单位向量的夹角为,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.18.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)19.(12分)在△ABC中,角所对的边分别为向量,向量,且.(1)求角的大小;(2)求的最大值.20.(12分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.(Ⅰ)证明:平面;(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.21.(12分)在中,内角的对边分别是,满足条件.(1)求角;(2)若边上的高为,求的长.22.(10分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
两边同乘-i,化简即可得出答案.【题目详解】i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【题目点拨】的共轭复数为2、C【解题分析】
根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可.【题目详解】解:∵,∴,则,∴,故选:C.【题目点拨】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题.3、C【解题分析】
可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.【题目详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.∴共有结对方式60+90=150种.故选:C.【题目点拨】本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.4、D【解题分析】
求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【题目详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆心到直线的距离为:,∴,而,与的面积相等,∴或,即到直线的距离或时满足条件,根据点到直线距离可知,①②④满足条件.故选:D.【题目点拨】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.5、B【解题分析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【题目详解】由于直线的倾斜角为,所以,则故答案选B【题目点拨】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.6、C【解题分析】
先求出集合U,再根据补集的定义求出结果即可.【题目详解】由题意得U=x|∵A=1,2∴CU故选C.【题目点拨】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.7、A【解题分析】
由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【题目详解】如图,取BC中点G,连接AG,DG,则,,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为.故选A.【题目点拨】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.8、B【解题分析】
求出复数,得出其对应点的坐标,确定所在象限.【题目详解】由题意,对应点坐标为,在第二象限.故选:B.【题目点拨】本题考查复数的几何意义,考查复数的除法运算,属于基础题.9、B【解题分析】
由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【题目详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【题目点拨】本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.10、A【解题分析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。11、B【解题分析】
通过复数的模以及复数的代数形式混合运算,化简求解即可.【题目详解】复数满足,∴,故选B.【题目点拨】本题主要考查复数的基本运算,复数模长的概念,属于基础题.12、A【解题分析】
利用等比数列的性质可得,即可得出.【题目详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【题目点拨】本题考查了等比中项的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【题目详解】令,则是上的偶函数,,则在上递减,于是在上递增.由得,即,于是,则,解得.故答案为:【题目点拨】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.14、【解题分析】
根据条件转化为函数在上的值域是函数在上的值域的子集;分别求值域即可得到结论.【题目详解】解:依题意,,即函数在上的值域是函数在上的值域的子集.因为在上的值域为()或(),在上的值域为,故或,解得故答案为:.【题目点拨】本题考查了分段函数的值域求参数的取值范围,属于中档题.15、【解题分析】
根据双曲线方程,设及,将代入双曲线方程并化简可得,由题意的最小值为,结合平面向量数量积的坐标运算化简,即可求得的值,进而求得离心率即可.【题目详解】设点,,则,即,∵,,,当时,等号成立,∴,∴,∴.故答案为:.【题目点拨】本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.16、【解题分析】
因为单位向量的夹角为,所以,所以==.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析.(Ⅱ).【解题分析】
(I)证明平面得出平面,根据面面垂直的判定定理得到结论;(II)当平面时,棱锥体积最大,建立空间坐标系,计算两平面的法向量,计算法向量的夹角得出答案.【题目详解】(I)证明:分别为的中点,,又平面平面,又平面平面平面(II),为定值当平面时,三棱锥的体积取最大值以为原点,以为坐标轴建立空间直角坐标系则,设平面的法向量为,则即,令可得平面是平面的一个法向量平面与平面所成角的正弦值为【题目点拨】本题考查了面面垂直的判定,二面角的计算,关键是能够根据体积的最值确定垂直关系,从而可以建立起空间直角坐标系,利用空间向量法求得二面角,属于中档题.18、(1)(2)详见解析(3)初中生平均参加公益劳动时间较长【解题分析】
(1)由图表直接利用随机事件的概率公式求解;(2)X的所有可能取值为0,1,2,3.由古典概型概率公式求概率,则分布列可求;(3)由图表直接判断结果.【题目详解】(1)100名学生中共有男生48名,其中共有20人参加公益劳动时间在,设男生中随机抽取一人,抽到的男生参加公益劳动时间在的事件为,那么;(2)的所有可能取值为0,1,2,3.∴;;;.∴随机变量的分布列为:(3)由图表可知,初中生平均参加公益劳动时间较长.【题目点拨】本小题主要考查古典概型的计算,考查超几何分布的分布列的计算,属于基础题.19、(1)(2)2【解题分析】
(1)转化条件得,进而可得,即可得解;(2)由化简可得,由结合三角函数的性质即可得解.【题目详解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值为2.【题目点拨】本题考查了平面向量平行、正弦定理以及三角恒等变换的应用,考查了三角函数的性质,属于中档题.20、(Ⅰ)见解析;(Ⅱ)【解题分析】
(Ⅰ)要证明线面平行,需先证明线线平行,所以连接,交于点M,连接ME,证明;(Ⅱ)由题意可知点到平面ABC的距离等于点到平面ABC的距离,根据体积公式剩余部分的体积是.【题目详解】(Ⅰ)如图,连接,交于点M,连接ME,则.因为平面,平面,所以平面.(Ⅱ)因为平面ABC,所以点到平面ABC的距离等于点到平面ABC的距离.如图,设O是AC的中点,连接,OB.因为为正三角形,所以,又平面平面,平面平面,所以平面ABC.所以点到平面ABC的距离,故三棱锥的体积为.而斜三棱柱的体积为.所以剩余部分的体积为.【题目点拨】本题考查证明线面平行,计算体积,意在考查推理证明,空间想象能力,计算能力,属于中档题型,一般证明线面平行的方法1.证明线线平行,则线面平行,2.证明面面平行,则线面平行,关键是证明线线平行,一般构造平行四边形,则对边平行,或是构造三角形中位线.21、(1).(2)【解题分析】
(1)利用正弦定理的边角互化可得,再根据,利用两角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【题目详解】(1)由正弦定理知由己知,而∴,(2)已知,则由知先求∴∴∴【题目点拨】本题主要考查了正弦定理解三角形、三角形的性质、两角和的正弦公式,需熟记定理与公式,属于基础题.22、(1)见解析;(2).【解题分析】
(1)利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 注射模具保养培训课件
- 向家长介绍区域活动
- 华为交换机培训详解
- 左肺癌病人护理查房
- 2.1大气的组成和垂直分层(教学设计)高一地理同步高效课堂(人教版2019必修一)
- 北京市大兴区2024-2025学年八年级上学期期中考试英语试题(含答案)
- 大单元视域下的单元整体教学与实施
- 信息技术(第2版)(拓展模块)教案4-模块3 3.4 大数据分析算法
- 2024年内蒙古包头市中考英语试题含解析
- 新版人教版一年级下册思想品德全册教案
- 钢结构工程施工(第五版) 课件 单元七 钢结构施工安全
- 2024年济南市中区人民医院招考聘用实行人员控制总量备案管理工作人员【重点基础提升】模拟试题(共500题)附带答案详解
- 基于网络流量分析的威胁检测研究
- 2024家教服务三方协议
- 《民航旅客运输》试卷及答案4套
- 中职-技能高考-机械制图
- DZ∕T 0130.6-2006 地质矿产实验室测试质量管理规范 第6部分:水样分析(正式版)
- 国外幼儿常规教育现状研究综述
- 小学英语数字化教学策略创新与实践
- 专题地方课程教材采购售后服务方案
- 医疗设备维保服务售后服务方案
评论
0/150
提交评论