




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南衡水实验中学高三高考全真模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.2.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.43.已知数列的前项和为,且,,则()A. B. C. D.4.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.5.函数的大致图象为()A. B.C. D.6.已知等差数列的前项和为,若,,则数列的公差为()A. B. C. D.7.已知复数,其中,,是虚数单位,则()A. B. C. D.8.集合,,则()A. B. C. D.9.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q10.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A. B. C. D.11.过抛物线的焦点且与的对称轴垂直的直线与交于,两点,,为的准线上的一点,则的面积为()A.1 B.2 C.4 D.812.复数满足,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为__________.14.已知非零向量,满足,且,则与的夹角为____________.15.在的展开式中,的系数等于__.16.已知函数,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围.18.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.19.(12分)已知a>0,证明:1.20.(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.21.(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好3005.开放且包容250合计10001000(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.0500.0100.001k3.8416.63510.82822.(10分)已知函数.(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【题目详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【题目点拨】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.2、D【解题分析】可以是共4个,选D.3、C【解题分析】
根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【题目详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【题目点拨】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.4、A【解题分析】
因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【题目详解】定义在上的函数的周期为4,当时,,,,.故选:A.【题目点拨】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.5、A【解题分析】
利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【题目详解】,排除掉C,D;,,,.故选:A.【题目点拨】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.6、D【解题分析】
根据等差数列公式直接计算得到答案.【题目详解】依题意,,故,故,故,故选:D.【题目点拨】本题考查了等差数列的计算,意在考查学生的计算能力.7、D【解题分析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.8、A【解题分析】
解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【题目详解】由可得,所以,由可得,所以,所以,故选A.【题目点拨】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.9、B【解题分析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。10、B【解题分析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【题目详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,,,,,,,,可得,,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【题目点拨】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.11、C【解题分析】
设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积.【题目详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,∵直线经过抛物线的焦点,,是与的交点,又轴,∴可设点坐标为,代入,解得,又∵点在准线上,设过点的的垂线与交于点,,∴.故应选C.【题目点拨】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值.本题难度一般.12、C【解题分析】
利用复数模与除法运算即可得到结果.【题目详解】解:,故选:C【题目点拨】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设,,,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【题目详解】解:由已知,的三边长,,成等差数列,设,,,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,,在直角中,由勾股定理,,即:,∴离心率.故答案为:.【题目点拨】本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.14、(或写成)【解题分析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【题目详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【题目点拨】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.15、7【解题分析】
由题,得,令,即可得到本题答案.【题目详解】由题,得,令,得x的系数.故答案为:7【题目点拨】本题主要考查二项式定理的应用,属基础题.16、【解题分析】
根据题意,利用函数奇偶性的定义判断函数的奇偶性,利用函数奇偶性的性质求解即可.【题目详解】因为函数,其定义域为,所以其定义域关于原点对称,又,所以函数为奇函数,因为,所以.故答案为:【题目点拨】本题考查函数奇偶性的判断及其性质;考查运算求解能力;熟练掌握函数奇偶性的判断方法是求解本题的关键;属于中档题、常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【题目详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为若对任意、都有,即为,由,当取得等号,则,由,可得,则的取值范围是【题目点拨】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题.(1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式把不等式恒成立问题转化为函数最值问题.18、,;当时,栈道总长度最短.【解题分析】
连,,由切线长定理知:,,,,即,,则,,进而确定的取值范围;根据求导得,利用增减性算出,进而求得取值.【题目详解】解:连,,由切线长定理知:,,,又,,故,则劣弧的长为,因此,优弧的长为,又,故,,即,,所以,,,则;,,其中,,-0+单调递减极小值单调递增故时,所以当时,栈道总长度最短.【题目点拨】本题主要考查导数在函数当中的应用,属于中档题.19、证明见解析【解题分析】
利用分析法,证明a即可.【题目详解】证明:∵a>0,∴a1,∴a1≥0,∴要证明1,只要证明a1(a)1﹣4(a)+4,只要证明:a,∵a1,∴原不等式成立.【题目点拨】本题考查不等式的证明,着重考查分析法的运用,考查推理论证能力,属于中档题.20、(1)的极小值为,无极大值.(2)见解析.【解题分析】
(1)对求导,确定函数单调性,得到函数极值.(2)构造函数,证明恒成立,得到,,得证.【题目详解】(1)由题意知,,令,得,令,得.则在上单调递减,在上单调递增,所以的极小值为,无极大值.(2)当时,要证,即证.令,则,令,得,令,得,则在上单调递减,在上单调递增,所以当时,,所以,即.因为时,,所以当时,,所以当时,不等式成立.【题目点拨】本题考查了函数的单调性,极值,不等式的证明,构造函数是解题的关键.21、(1)(万)(2)(3)填表见解析;有的把握认为性别与“自然环境”或“人文环境”的选择有关【解题分析】
(1)在1000个样本中选择“创业氛围好”来A城市发展的有300个,根据频率公式即可求得结果.(2)由分层抽样的知识可得,抽取6人中,4人选择“森林城市,空气清新”,2人选择“降水充足,气候怡人”求出对应的基本事件数,即可求得结果.(3)计算的值,对照临界值表可得答案.【题目详解】(1)(万)(2)从所抽取选择“自然环境”作为来A城市发展理由的300人中,利用分层抽样的方法抽取6人,其中4人是选择“森林城市,空气清新”,2人是选择“降水充足,气候怡人”.记事件A为选出的3人中至少有2人选择“森林城市,空气清新”,则,.(3)列联表如下自然环境人文环境合计男100400500女200300500合计3007001000,所以有的把握认为性别与“自然环境”或“人文环境”的选择有关.【题目点拨】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、考查学生的综合分析与计算能力,难度较易.22、(1)极大值,极小值;(2)详见解析.【解题分析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人道主义救援专业资格考试试卷及答案
- 2025年广告学专业考研模拟考试试题及答案
- 2025年高等数学能力测试试卷及答案
- 《战国策的阅读与解析:初三语文文言文教案》
- 《探索生命之美:初中生物教学教案》
- 小企业联保循环额度借款协议
- 《电磁感应现象》:高中物理电路部分教案
- 一次特别的生日派对回忆记事作文12篇
- 八里庄街道组织活动方案
- 公交公司庆国庆活动方案
- (完整版)软件项目章程模版
- 原油管道工程动火连头安全技术方案
- 丰台区五年级下期末试题
- 系统生物学(课堂PPT)
- 译林版四下英语期末试卷译林版
- 食品安全信用等级评分表 餐饮类
- 你好法语A1单词表(lenouveautaiA1)
- 德邦物流企业自查报告
- 有限空间作业安全告知牌及警示标志(共21页)
- TROXLER3440核子密度仪
- 供电所星级班组(标准化)创建工作总结模板
评论
0/150
提交评论