江苏省连云港市新海实验中学2024届八上数学期末复习检测模拟试题含解析_第1页
江苏省连云港市新海实验中学2024届八上数学期末复习检测模拟试题含解析_第2页
江苏省连云港市新海实验中学2024届八上数学期末复习检测模拟试题含解析_第3页
江苏省连云港市新海实验中学2024届八上数学期末复习检测模拟试题含解析_第4页
江苏省连云港市新海实验中学2024届八上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省连云港市新海实验中学2024届八上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示.根据图象求得y与t的关系式为,这里的常数“-1.5”,“25”表示的实际意义分别是()A.“-1.5”表示每小时耗油1.5升,“25”表示到达乙地时油箱剩余油25升B.“-1.5”表示每小时耗油1.5升,“25”表示出发时油箱原有油25升C.“-1.5”表示每小时耗油1.5升,“25”表示每小时行驶25千米D.“-1.5”表示每小时行驶1.5千米,“25”表示甲乙两地的距离为25千米2.小明手中有2根木棒长度分别为和,请你帮他选择第三根木棒,使其能围成一个三角形,则选择的木棒可以是()A. B. C. D.无法确定3.已知a﹣b=2,则a2﹣b2﹣4b的值为()A.2 B.4 C.6 D.84.下列命题:①若则;②等边三角形的三个内角都是;③线段垂直平分线上的点到线段两端的距离相等.以上命题的逆命题是真命题的有()A.个 B.个 C.个 D.个5.如图等边△ABC边长为1cm,D、E分别是AB、AC上两点,将△ADE沿直线DE折叠,点A落在处,A在△ABC外,则阴影部分图形周长为()A.1cm B.1.5cm C.2cm D.3cm6.如图,一副分别含有和角的两个直角三角板,拼成如下图形,其中,,,则的度数是()A.15° B.25° C.30° D.10°7.若分式的值为0,则x的值为()A.0 B.1 C.﹣1 D.±18.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,AP=5,点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是()A.10 B.8 C.6 D.49.张师傅驾车从甲地到乙地匀速行驶,行驶中油箱剩余油量(升)与行驶时间(小时)之间的关系式为,这里的常数“”,“”表示的实际意义分别是()A.“”表示每小时耗油升,“”表示到达乙地时油箱剩余油升B.“”表示每小时耗油升,“”表示出发时油箱原有油升C.“”表示每小时耗油升,“”表示每小时行驶千米D.“”表示每小时行驶千米,“”表示甲乙两地的距离为千米10.如图,已知,,,,则下列结论错误的是()A. B. C. D.11.对于一次函数y=﹣2x+1,下列说法正确的是()A.图象分布在第一、二、三象限B.y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1>y212.下列各命题是真命题的是()A.如果,那么B.0.3,0.4,0.5是一组勾股数C.两条直线被第三条直线所截,同位角相等D.三角形的任意两边之和大于第三边二、填空题(每题4分,共24分)13.已知等腰三角形的一个内角是80°,则它的底角是°.14.如图,是等边三角形,点是边的中点,点在直线上,若是轴对称图形,则的度数为__________15.若a+b=﹣3,ab=2,则_____.16.如图,长方形两边长,两顶点分别在轴的正半轴和轴的正半轴上运动,则顶点到原点的距离最大值是__________.17.已知,且,为两个连续的整数,则___________.18.如图,四边形ABCD,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD的面积为___________.三、解答题(共78分)19.(8分)先化简再求值:,其中.20.(8分)如图,∠A=∠D,要使△ABC≌△DBC,还需要补充一个条件:_____(填一个即可).21.(8分)如图所示,已知中,,,,、是的边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为.(1)则____________;(2)当为何值时,点在边的垂直平分线上?此时_________?(3)当点在边上运动时,直接写出使成为等腰三角形的运动时间.22.(10分)在平面直角坐标系中,的三个顶点的坐标分别为,与关于轴对称,与与与对应.(1)在平面直角坐标系中画出;(2)在平面直角坐标系中作出,并写出的坐标.23.(10分)如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);并写出A1,B1,C1的坐标(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.24.(10分)(1)计算:(2)计算:25.(12分)吃香肠是庐江县春节的传统习俗,小严的父亲去年春节前用了元购买猪肉装香肠;今年下半年受非洲猪瘟影响,猪肉出现大幅度涨价,价格比去年上涨了元,(1)如果去年猪肉价格为元,求今年元比去年少买多少猪肉?(结果用的式子表示)(2)近期县政府为保障猪肉市场供应,为百姓生活着想,采取一系列惠民政策,猪肉价格下降了元,这样小严的父亲花了买到和去年一样多的猪肉.求小严父亲今年购买猪肉每千克多少元.26.已知:,,若x的整数部分是m,y的小数部分是n,求的值

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:根据一次函数的实际应用可得:-1.5表示每小时耗油1.5升,25表示出发前油箱原有油25升.考点:一次函数的实际应用2、C【分析】据三角形三边关系定理,设第三边长为xcm,则9-4<x<9+4,即5<x<13,由此选择符合条件的线段.【详解】解:设第三边长为xcm,

由三角形三边关系定理可知,9-4<x<9+4,

即,5<x<13,

∴x=6cm符合题意.

故选:C.【点睛】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.3、B【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a﹣b=2,∴原式=(a+b)(a﹣b)﹣1b=2(a+b)﹣1b=2a+2b﹣1b=2(a﹣b)=1.故选:B.【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.4、B【分析】先写出各命题的逆命题,然后根据绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理逐一判断即可.【详解】解:①“若则”的逆命题为“若,则”,当,则,故①的逆命题为假命题;②“等边三角形的三个内角都是”的逆命题为“三个内角都是60°的三角形是等边三角形”,该命题为真命题,故②的逆命题为真命题;③“线段垂直平分线上的点到线段两端的距离相等”的逆命题为“到线段两端点距离相等的点在这条线段的垂直平分线上”,该命题为真命题,故②的逆命题为真命题;综上:有2个符合题意故选B.【点睛】此题考查的是写一个命题的逆命题、绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理,掌握绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理是解决此题的关键.5、D【分析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】解:如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DG+GA′+EF+FA′+DB+CE+BG+GF+CF=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选D.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.6、A【分析】先由平角的定义求出∠BDF的度数,根据三角形内角和定理即可得出结论.【详解】解:∵Rt△CDE中,∠EDC=60°,

∴∠BDF=180°-60°=120°,

∵∠C=90°,∠BAC=45°,

∴∠B=45°,

∴∠BFD=180°-45°-120°=15°.

故选:A.【点睛】本题考查的是三角形的内角和,熟知三角形的内角和是解答此题的关键.7、B【解析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式的值为零,∴,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.8、B【分析】过P作PM⊥AB于M,根据角平分线性质求出PM=3,根据已知得出关于AF的方程,求出方程的解即可.【详解】过P作PM⊥AB于M,∵点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,∴PM=PE=3,∵AP=5,∴AE=4,∵△FAP面积恰好是△EAP面积的2倍,∴×AF×3=2××4×3,∴AF=8,故选B.考点:角平分线的性质.9、B【分析】将一次函数与实际情况结合,能快速得出-6.5和23的实际意义.【详解】一次函数表示的是汽车行驶时间t与油箱中剩余油量的关系生活中,行驶时间越久,则剩余油量应该越少可知:-6.5表示每小时耗油6.5升,23表示出发时油箱剩余油23升故选:B.【点睛】本题考查一次函数的应用,解题关键是将函数解析式与事情情况对应起来.10、B【分析】先根据三角形全等的判定定理证得,再根据三角形全等的性质、等腰三角形的性质可判断A、C选项,又由等腰三角形的性质、三角形的内角和定理可判断出D选项,从而可得出答案.【详解】,即在和中,,则A选项正确(等边对等角),则C选项正确,即又,即,则D选项正确虽然,但不能推出,则B选项错误故选:B.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出是解题关键.11、D【分析】根据一次函数的图象和性质,逐一判断选项,即可得到答案.【详解】A、∵k=﹣2<0,b=1>0,∴图象经过第一、二、四象限,故不正确;B、∵k=﹣2,∴y随x的增大而减小,故不正确;C、∵当x=1时,y=﹣1,∴图象不过(1,﹣2),故不正确;D、∵y随x的增大而减小,∴若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1>y2,故正确;故选:D.【点睛】本题主要考查一次函数的图象和性质,掌握一次函数解析式系数的几何意义,增减性,以及一次函数图象上点的坐标特征,是解题的关键.12、D【分析】逐一判定各项,正确则为真命题,错误则为假命题.【详解】A选项,如果,那么不一定等于,假命题;B选项,,不是勾股数,假命题;C选项,两条平行的直线被第三条直线所截,同位角相等,假命题;D选项,三角形的任意两边之和大于第三边,真命题;故选:D.【点睛】此题主要考查真命题的判断,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、80°或50°【解析】分两种情况:①当80°的角为等腰三角形的顶角时,底角的度数=(180°−80°)÷2=50°;②当80°的角为等腰三角形的底角时,其底角为80°,故它的底角度数是50或80.故答案为:80°或50°.14、15°或30°或75°或120°【分析】当△PAD是等腰三角形时,是轴对称图形.分四种情形分别求解即可.【详解】如图,当△PAD是等腰三角形时,是轴对称图形.∵AD是等边三角形BC边长的高,∴∠BAD=∠CAD=30°,当AP=AD时,∠P1AD=∠P1AB+∠BAD=120°+30°=150°∴∠AP1D===15°,∠AP3D===75°.当PA=PD时,可得∠AP2D===120°.当DA=DP时,可得∠AP4D=∠P4AD=30°,综上所述,满足条件的∠APD的值为120°或75°或30°或15°.故答案为15°或30°或75°或120°.【点睛】此题主要考查等腰三角形的判定与性质,解题的关键是根据题意分情况讨论.15、5【分析】将a+b=﹣3两边分别平方,然后利用完全平方公式展开即可求得答案.【详解】∵a+b=﹣3,∴(a+b)2=(﹣3)2,即a2+2ab+b2=9,又∵ab=2,∴a2+b2=9-2ab=9-4=5,故答案为5.【点睛】本题考查了根据完全平方公式的变形求代数式的值,熟练掌握完全平方公式的结构特征是解题的关键.16、【分析】取AB的中点E,连接OE,DE,易得O,D之间的最大距离为OE+DE,分别求出OE,DE的长,即可得出答案.【详解】如图,取AB的中点E,连接OE,DE,∵AB=4∴AE=2∵四边形ABCD为矩形∴∠DAE=90°∵AD=2,AE=2∴DE=∵在Rt△AOB中,E为斜边AB的中点,∴OE=AB=2又∵OD≤OE+DE∴点到原点的距离最大值=OE+DE=故答案为:.【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,熟记直角三角形斜边上的中线等于斜边的一半,正确作出辅助线是解题的关键.17、2【分析】先估算出的取值范围,得出a,b的值,进而可得出结论.【详解】∵4<7<9,∴2<<1.∵a、b为两个连续整数,∴a=2,b=1,∴a+b=2+1=2.故答案为2.【点睛】本题考查的是估算无理数的大小,先根据题意求出a,b的值是解答此题的关键.18、36【分析】连接BD,先根据勾股定理求出BD的长,再根据勾股定理的逆定理判断出△BCD的形状,根据=即可得出结论.【详解】连接BD.∵∠A=90°,AB=3,DA=4,∴BD==5在△BCD中,∵BD=5,CD=12,BC=13,,即,∴△BCD是直角三角形,∴==,故答案为:36.【点睛】此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.三、解答题(共78分)19、2m+6;1.【分析】先根据分式的各个运算法则化简,然后代入求值即可.【详解】解:原式====当时,原式=2×(﹣1)+6=1.【点睛】此题考查的是分式的化简求值题,掌握分式的各个运算法则是解决此题的关键.20、∠ABC=∠DBC或∠ACB=∠DCB.【分析】直接利用全等三角形的判定方法定理得出即可.【详解】∵∠A=∠D,BC=BC,∴当∠ABC=∠DBC或∠ACB=∠DCB时,△ABC≌△DBC(AAS),∴还需要补充一个条件为:∠ABC=∠DBC或∠ACB=∠DCB.故答案为∠ABC=∠DBC或∠ACB=∠DCB.【点睛】本题考查全等三角形的判定,解题关键在于熟练掌握全等三角形的性质.21、(1)11;(1)t=11.5s时,13cm;(3)11s或11s或13.1s【分析】(1)由勾股定理即可得出结论;(1)由线段垂直平分线的性质得到PC=PA=t,则PB=16-t.在Rt△BPC中,由勾股定理可求得t的值,判断出此时,点Q在边AC上,根据CQ=1t-BC计算即可;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.【详解】(1)在Rt△ABC中,BC(cm).故答案为:11;(1)如图,点P在边AC的垂直平分线上时,连接PC,∴PC=PA=t,PB=16-t.在Rt△BPC中,,即,解得:t=.∵Q从B到C所需的时间为11÷1=6(s),>6,∴此时,点Q在边AC上,CQ=(cm);(3)分三种情况讨论:①当CQ=BQ时,如图1所示,则∠C=∠CBQ.∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=11,∴t=11÷1=11(s).②当CQ=BC时,如图1所示,则BC+CQ=14,∴t=14÷1=11(s).③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE,∴CE=7.1.∵BC=BQ,BE⊥CQ,∴CQ=1CE=14.4,∴BC+CQ=16.4,∴t=16.4÷1=13.1(s).综上所述:当t为11s或11s或13.1s时,△BCQ为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.22、(1)详见解析;(2)图详见解详,【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可;(2)关于x轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出D、E、F的坐标.【详解】(1)如图所示:(2)如图所示:【点睛】考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论