高中数学必修4第二章 平面向量公式与定义及高中数学必修4导学案_第1页
高中数学必修4第二章 平面向量公式与定义及高中数学必修4导学案_第2页
高中数学必修4第二章 平面向量公式与定义及高中数学必修4导学案_第3页
高中数学必修4第二章 平面向量公式与定义及高中数学必修4导学案_第4页
高中数学必修4第二章 平面向量公式与定义及高中数学必修4导学案_第5页
已阅读5页,还剩104页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平面向量公式1、向量的加法向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y)b=(x',y')则a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.向量的数量积的坐标表示:a•b=x•x'+y•y'.向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质a•a=|a|的平方.a⊥b〈=〉a•b=0.|a•b|≤|a|•|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.2、向量的数量积不满足消去律,即:由a•b=a•c(a≠0),推不出b=c.3、|a•b|≠|a|•|b|4、由|a|=|b|,推不出a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b反向时,右边取等号.定比分点定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线三角形重心判断式在△ABC中,若GA+GB+GC=O,则G为△ABC的重心向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.a//b的重要条件是xy'-x'y=0.零向量0平行于任何向量.向量垂直的充要条件a⊥b的充要条件是a•b=0.a⊥b的充要条件是xx'+yy'=0.零向量0垂直于任何向量.1、线性运算

①a+b=b+a

②(a+b)+c=a+(b+c)

③λ(μa)=(λμ)a.

④(λ+μ)a=λa+μa.

⑤λ(a±b)=λa±λb

⑥a,b共线→b=λa

2、坐标运算,其中a(x1,y1),

b(x2,y2)

①a+b=(

x1+x2,y1+y2)

②a-b=(

x1-x2,y1-y2)

③λa=(λx1,λy1)

④点A(a,b),点B(c,d),则向量AB=(c-a,b-d)

⑤点A(a,b),点B(c,d),则向量BA=(a-c,b-d)

3、数量积运算

①a*b=∣a∣*∣b∣*cosθ

②a*b=b*a

(交换律)

③(λ*a)*b=λ*(a*b)

=a*

(λ*b)(结合律,注意向量间无结合律)④(a±b)*c=a*c±b*c(分配律)

⑤若a*(b-c)=0,则b=c或a垂直于(b-c)

⑥(a±b)2=a2±2a*b+b2

⑦(a+b)*(a-b)=a2-b2

⑧a(x1,y1),

b(x2,y2),则a*b=x1x2+y1y2,∣a∣2

=x2+y2,∣a∣=√x2+y2

a垂直于b→x1x2+y1y2=0;一般地,a与b夹角θ满足如下条件:

cosθ=a*b/∣a∣*∣b∣=(x1x2+y1y2)/(√x12+y12)*(√x22+y22)1.1.1任意角 课前预习学案一、预习目标1、认识角扩充的必要性,了解任意角的概念,与过去学习过的一些容易混淆的概念相区分; 2、能用集合和数学符号表示终边相同的角,体会终边相同角的周期性;3、能用集合和数学符号表示象限角;4、能用集合和数学符号表示终边满足一定条件的角.二、预习内容 1.回忆:初中是任何定义角的?一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。在体操比赛中我们经常听到这样的术语:“转体720o”(即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?2.角的概念的推广:3.正角、负角、零角概念4.象限角思考三个问题: 1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?3.是不是任意角都可以归结为是象限角,为什么? 4.已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?(1)4200; (2)-750; (3)8550; (4)-5100.5.终边相同的角的表示课内探究学案一、学习目标(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解任意角以及象限角的概念;(3)掌握所有与角a终边相同的角(包括角a)的表示方法;学习重难点:重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。难点:把终边相同的角用集合和数学符号语言表示出来。二、学习过程例1.例1在范围内,找出与角终边相同的角,并判定它是第几象限角.(注:是指)例2.写出终边在轴上的角的集合.例3.写出终边直线在上的角的集合,并把中适合不等式的元素写出来.(三)【回顾小结】1.尝试练习(1)教材第3、4、5题.(2)补充:时针经过3小时20分,则时针转过的角度为,分针转过的角度为。注意:(1);(2)是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差的整数倍.2.学习小结你知道角是如何推广的吗?象限角是如何定义的呢?(3)你熟练掌握具有相同终边角a的表示了吗?(四)当堂检测1.设,,那么有(

).A.B.C.()D.2.用集合表示:(1)各象限的角组成的集合.(2)终边落在轴右侧的角的集合.3.在~间,找出与下列各角终边相同的角,并判定它们是第几象限角(1);(2);(3).3.解:(1)∵∴与角终边相同的角是角,它是第三象限的角;(2)∵∴与终边相同的角是,它是第四象限的角;(3)所以与角终边相同的角是,它是第二象限角.课后练习与提高1.若时针走过2小时40分,则分针走过的角是多少?2.下列命题正确的是:()(A)终边相同的角一定相等。(B)第一象限的角都是锐角。(C)锐角都是第一象限的角。(D)小于的角都是锐角。3.若a是第一象限的角,则是第象限角。4.一角为,其终边按逆时针方向旋转三周后的角度数为__.5.集合M={α=k,k∈Z}中,各角的终边都在(

)A.轴正半轴上,B.轴正半轴上,C.轴或轴上,D.轴正半轴或轴正半轴上6.设,C={α|α=k180o+45o,k∈Z},则相等的角集合为__.参考答案1.解:2小时40分=小时,故分针走过的角为480。2.C3.一或三4.5.C6._B=D,C=E1.1.2弧度制课前预习学案一、预习目标:1.了解弧度制的表示方法;2.知道弧长公式和扇形面积公式.二、预习内容初中学习中我们知道角的度量单位是度、分、秒,它们是60进制,角是否可以用其它单位度量,是否可以采用10进制?自学课本第7、8页.通过自学回答以下问题:角的弧度制是如何引入的?为什么要引入弧度制?好处是什么?弧度是如何定义的?角度制与弧度制的区别与联系?三、提出疑惑1、平角、周角的弧度数?2、角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关?3、角的弧度与角所在圆的半径、角所对的弧长有何关系?课内探究学案一、学习目标1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式(为以.作为圆心角时所对圆弧的长,为圆半径);4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。二、重点、难点弧度与角度之间的换算;弧长公式、扇形面积公式的应用。三、学习过程(一)复习:初中时所学的角度制,是怎么规定角的?角度制的单位有哪些,是多少进制的?(二)为了使用方便,我们经常会用到一种十进制的度量角的单位制——弧度制。<我们规定>叫做1弧度的角,用符号表示,读作。练习:圆的半径为,圆弧长为、、的弧所对的圆心角分别为多少?<思考>:圆心角的弧度数与半径的大小有关吗?由上可知:如果半径为r的园的圆心角所对的弧长为,那么,角的弧度数的绝对值是:,的正负由决定。正角的弧度数是一个,负角的弧度数是一个,零角的弧度数是。<说明>:我们用弧度制表示角的时候,“弧度”或经常省略,即只写一实数表示角的度量。例如:当弧长且所对的圆心角表示负角时,这个圆心角的弧度数是.(三)角度与弧度的换算rad1=归纳:把角从弧度化为度的方法是:把角从度化为弧度的方法是:<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整30°90°120°150°270°0例1、把下列各角从度化为弧度:(1)(2)(3)(4)变式练习:把下列各角从度化为弧度:(1)22º30′(2)—210º(3)1200º例2、把下列各角从弧度化为度:(1)(2)3.5(3)2(4)变式练习:把下列各角从弧度化为度:(1)(2)—(3)(四)弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.正角正角零角负角正实数零负实数弧度下的弧长公式和扇形面积公式弧长公式:因为(其中表示所对的弧长),所以,弧长公式为.扇形面积公式:.说明:以上公式中的必须为弧度单位.例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。变式练习1、半径为120mm的圆上,有一条弧的长是144mm,求该弧所对的圆心角的弧度数。2、半径变为原来的,而弧长不变,则该弧所对的圆心角是原来的倍。3、若2弧度的圆心角所对的弧长是,则这个圆心角所在的扇形面积是.4、以原点为圆心,半径为1的圆中,一条弦的长度为,所对的圆心角的弧度数为.课堂小结:1、弧度制的定义;2、弧度制与角度制的转换与区别;3、牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;(七)作业布置习题1.1A组第7,8,9题。课后练习与提高1.在中,若,求A,B,C弧度数。2.直径为20cm的滑轮,每秒钟旋转,则滑轮上一点经过5秒钟转过的弧长是多少?3.选做题如图,扇形的面积是,它的周长是,求扇形的中心角及弦的长。1.21任意角的三角函数课前预习学案一、预习目标:1.了解三角函数的两种定义方法;2.知道三角函数线的基本做法.二、预习内容:根据课本本节内容,完成预习目标,完成以下各个概念的填空.课内探究学案一、学习目标(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.二、重点、难点重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.三、学习过程(一)复习:1、初中锐角的三角函数______________________________________________________2、在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为_______________________________________________(二)新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么(1)比值_______叫做α的正弦,记作_______,即________(2)比值_______叫做α的余弦,记作_______,即_________(3)比值_______叫做α的正切,记作_______,即_________;2.三角函数的定义域、值域函数定义域值域3.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值对于第一、二象限为_____(),对于第三、四象限为____();②余弦值对于第一、四象限为_____(),对于第二、三象限为____();③正切值对于第一、三象限为_______(同号),对于第二、四象限为______(异号).4.诱导公式由三角函数的定义,就可知道:__________________________即有:___________________________________________________________________________5.当角的终边上一点的坐标满足_______________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.(Ⅰ(Ⅰ)(Ⅱ)(Ⅳ(Ⅳ)(Ⅲ)由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有,_______,________._________我们就分别称有向线段为正弦线、余弦线、正切线。(三)例题例1.已知角α的终边经过点,求α的三个函数制值。变式训练1:已知角的终边过点,求角的正弦、余弦和正切值.例2.求下列各角的三个三角函数值:(1);(2);(3).变式训练2:求的正弦、余弦和正切值.例3.已知角α的终边过点,求α的三个三角函数值。变式训练3:求函数的值域例4..利用三角函数线比较下列各组数的大小:1.与2.tan与tan(四)、小结课后练习与提高一、选择题1.是第二象限角,P(,)为其终边上一点,且,则的值为()A.B.C.D.2.是第二象限角,且,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角3、如果那么下列各式中正确的是()A.B.C.D.二、填空题4.已知的终边过(9,)且,,则的取值范围是。5.函数的定义域为。6.的值为(正数,负数,0,不存在)三、解答题7.已知角α的终边上一点P的坐标为()(),且,求1.2.2同角的三角函数的基本关系课前预习学案预习目标:通过复习回顾三角函数定义和单位圆中的三角函数线,为本节所要学习的同角三角函数的基本关系式做好铺垫。预习内容:复习回顾三角函数定义和单位圆中的三角函数线:。提出疑惑:与初中学习锐角三角函数一样,我们能不能研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化呢?。课内探究学案学习目标:⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;2通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;3注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.学习过程:【创设情境】OxOxyPM1A(1,0)【探究新知】探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角不同三角函数之间的关系吗?如图:以正弦线,余弦线和半径三者的长构成直角三角形,而且.由勾股定理由,因此,即.根据三角函数的定义,当时,有.这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.【例题讲评】例1化简:例2已知例3求证:例4已知方程的两根分别是,求例5已知,求【课堂练习】化简下列各式3.1.3.1三角函数的诱导公式(一)课前预习学案预习目标:回顾记忆各特殊锐角三角函数值,在单位圆中正确识别三种三角函数线。预习内容:1、背诵30度、45度、60度角的正弦、余弦、正切值;2、在平面直角坐标系中做出单位圆,并分别找出任意角的正弦线、余弦线、正切线。提出疑惑:我们知道,任一角都可以转化为终边在内的角,如何进一步求出它的三角函数值?我们对范围内的角的三角函数值是熟悉的,那么若能把内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决。那么如何实现这种转化呢?课内探究学案一、学习目标:(1).借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题(2).通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。二、重点与难点:重点:四组诱导公式的记忆、理解、运用。难点:四组诱导公式的推导、记忆及符号的判断;三、学习过程:(一)研探新知1.诱导公式的推导由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:(公式一)诱导公式(一)的作用:把任意角的正弦、余弦、正切化为之间角的正弦、余弦、正切。【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成,是不对的【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到角后,又如何将角间的角转化到角呢?除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。那么它们的三角函数值有何关系呢?若角的终边与角的终边关于轴对称,那么与的三角函数值之间有什么关系?特别地,角与角的终边关于轴对称,由单位圆性质可以推得:(公式二)特别地,角与角的终边关于轴对称,故有(公式三)特别地,角与角的终边关于原点对称,故有(公式四)所以,我们只需研究的同名三角函数的关系即研究了的关系了。【说明】:①公式中的指任意角;②在角度制和弧度制下,公式都成立;③记忆方法:“函数名不变,符号看象限”;【方法小结】:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是:①;②;③。可概括为:“”(有时也直接化到锐角求值)。(二)、例题分析:例1求下列三角函数值:(1);(2).分析:先将不是范围内角的三角函数,转化为范围内的角的三角函数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到范围内角的三角函数的值。例2化简.(三)课堂练习:(1).若,则的取值集合为 () A. B. C. D.(2).已知那么 () A. B. C. D.(3).设角的值等于 () A. B.- C. D.-(4).当时,的值为 () A.-1 B.1 C.±1 D.与取值有关(5).设为常数),且那么A.1 B.3C.5 D.7()(6).已知则.课后练习与提高一、选择题1.已知,则值为()A.B.—C.D.—2.cos(+α)=—,<α<,sin(-α)值为()A.B.C.D.—3.化简:得()A.B.C.D.±4.已知,,那么的值是()ABCD二、填空题5.如果且那么的终边在第象限6.求值:2sin(-1110º)-sin960º+=.三、解答题7.设,求的值.8.已知方程sin(3)=2cos(4),求的值。1.3.2三角函数诱导公式(二)课前预习学案一、预习目标熟记正弦、余弦和正切的诱导公式,理解公式的由来并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简二、复习与预习1.利用单位圆表示任意角的正弦值和余弦值;____________________2.诱导公式一及其用途:__________________________________________________________________________________________3、对于任何一个内的角,以下四种情况有且只有一种成立(其中为锐角):4、诱导公式二:5、诱导公式三:6、诱导公式四:7、诱导公式五:8、诱导公式六:三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.通过本节内容的教学,使学生进一步理解和掌握四组正弦、余弦和正切的诱导公式,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;2.通过公式的应用,培养学生的化归思想,运算推理能力、分析问题和解决问题的能力;学习重难点:重点:诱导公式及诱导公式的综合运用.难点:公式的推导和对称变换思想在学生学习过程中的渗透.二、学习过程创设情境:问题1:请同学们回顾一下前一节我们学习的与、、的三角函数关系。

问题2:如果两个点关于直线y=x对称,它们的坐标之间有什么关系呢?若两个点关于y轴对称呢?

探究新知:问题1:如图:设的终边与单位圆相交于点P,则P点坐标为

,点P关于直线y=x的轴对称点为M,则M点坐标为

,点M关于y轴的对称点N,则N的坐标为

∠XON的大小与的关系是什么呢?点N的坐标又可以怎么表示呢?

问题2:观察点N的坐标,你从中发现什么规律了?

例1

利用上面所学公式求下列各式的值:(1)

(2)

(3)

(4)变式训练1:将下列三角函数化为到之间的三角函数:(1)

(2)

(3)思考:我们学习了的诱导公式,还知道的诱导公式,那么对于,又有怎样的诱导公式呢?例2

已知方程sin(3)=2cos(4),求的值变式训练2:已知,求的值。课堂练习1.利用上面所学公式求下列各式的值:(1)

(2)2.将下列三角函数化为到之间的三角函数:(1)

(2)归纳总结:课后练习与提高1.已知,则值为()A.B.—C.D.—2.cos(+α)=—,<α<,sin(-α)值为()A.B.C.D.—3.化简:得()A.B.C.D.±4.已知,,那么的值是5.如果且那么的终边在第象限6.求值:2sin(-1110º)-sin960º+=.7.已知方程sin(3)=2cos(4),求的值。1.4.1正弦函数,余弦函数的图象课前预习学案一、预习目标理解并掌握作正弦函数图象的方法,会用五点法作正余弦函数简图.二、复习与预习1.正、余弦函数定义:____________________2.正弦线、余弦线:______________________________3.10.正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:、、、、.20.作在上的图象时,五个关键点是、、、、.步骤:_____________,_______________,____________________.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标(1)利用单位圆中的三角函数线作出的图象,明确图象的形状;

(2)根据关系,作出的图象;

(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;学习重难点:重点::“五点法”画长度为一个周期的闭区间上的正弦函数图象;难点:运用几何法画正弦函数图象。二、学习过程1.创设情境:问题1:三角函数的定义及实质?三角函数线的作法和作用?问题2:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象?作图过程中有什么困难?

2.探究新知:问题一:如何

作出的图像呢?

问题二:如何得到的图象?

问题三:这个方法作图象,虽然比较精确,但不太实用,如何快捷地画出正弦函数的图象呢?组织学生描出这五个点,并用光滑的曲线连接起来,很自然得到函数的简图,称为“五点法”作图。“五点法”作图可由师生共同完成小结作图步骤:思考:如何快速做出余弦函数图像?例1、画出下列函数的简图:y=1+sinx,x∈〔0,2π〕解析:利用五点作图法按照如下步骤处理1、列表2、描点3、连线变式训练:y=-cosx,x∈〔0,2π〕三、反思总结1、数学知识:2、数学思想方法:四、当堂检测画出下列函数的简图:(1)y=|sinx|,(2)y=sin|x|思考:可用什么方法得到的图像?课后练习与提高1.用五点法作的图象.2.结合图象,判断方程的实数解的个数.3.分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:1.4.2正弦函数余弦函数的性质课前预习学案一、预习目标探究正弦函数、余弦函数的周期性,周期,最小正周期;会比较三角函数值的大小,会求三角函数的单调区间.二、预习内容1._____________________________________________________________________叫做周期函数,___________________________________________叫这个函数的周期.2._____________________________________叫做函数的最小正周期.3.正弦函数,余弦函数都是周期函数,周期是____________,最小正周期是________.4.由诱导公式_________________________可知正弦函数是奇函数.由诱导公式_________________________可知,余弦函数是偶函数.5.正弦函数图象关于____________________对称,正弦函数是_____________.余弦函数图象关于________________对称,余弦函数是_____________________.6.正弦函数在每一个闭区间_________________上都是增函数,其值从-1增大到1;在每一个闭区间_________________上都是减函数,其值从1减少到-1.7.余弦函数在每一个闭区间_________________上都是增函数,其值从-1增大到1;在每一个闭区间______________上都是减函数,其值从1减少到-1.8.正弦函数当且仅当x=___________时,取得最大值1,当且仅当x=_________________时取得最小值-1.9.余弦函数当且仅当x=______________时取得最大值1;当且仅当x=__________时取得最小值-1.10.正弦函数的周期是___________________________.11.余弦函数的周期是___________________________.12.函数y=sinx+1的最大值是__________,最小值是_____________,y=-3cos2x的最大值是_____________,最小值是_________________.13.y=-3cos2x取得最大值时的自变量x的集合是_________________.14.把下列三角函数值从小到大排列起来为:_____________________________,,,三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标:会根据图象观察得出正弦函数、余弦函数的性质;会求含有的三角式的性质;会应用正、余弦的值域来求函数和函数的值域学习重难点:正弦函数和余弦函数的性质及简单应用。二、学习过程例1、求函数y=sin(2x+)的单调增区间.解:变式训练1.求函数y=sin(-2x+)的单调增区间解:例2:判断函数的奇偶性解:变式训练2.)解:例3.比较sin2500、sin2600的大小解:变式训练3.cos解:三、反思总结1、数学知识:2、数学思想方法:四、当堂检测一、选择题1.函数的奇偶数性为().A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数2.下列函数在上是增函数的是()A.y=sinxB.y=cosxC.y=sin2xD.y=cos2x3.下列四个函数中,既是上的增函数,又是以为周期的偶函数的是().A.B.C.D.二、填空题4.把下列各等式成立的序号写在后面的横线上。①②③④__________________________________________________________5.不等式≥的解集是______________________.三、解答题6.求出数的单调递增区间.课后练习与提高一、选择题1.y=sin(x-EQ\F(π,3))的单调增区间是()A.[kπ-EQ\F(π,6),kπ+EQ\F(5π,6)](k∈Z)B.[2kπ-EQ\F(π,6),2kπ+EQ\F(5π,6)](k∈Z)C.[kπ-EQ\F(7π,6),kπ-EQ\F(π,6)](k∈Z)D.[2kπ-EQ\F(7π,6),2kπ-EQ\F(π,6)](k∈Z)2.下列函数中是奇函数的是()A.y=-|sinx|B.y=sin(-|x|)C.y=sin|x|D.y=xsin|x|3.在(0,2π)内,使sinx>cosx成立的x取值范围是()A.(EQ\F(π,4),EQ\F(π,2))∪(π,EQ\F(5π,4))B.(EQ\F(π,4),π)C.(EQ\F(π,4),EQ\F(5π,4))D.(EQ\F(π,4),π)∪(EQ\F(5π,4),EQ\F(3π,2))二、填空题4.Cos1,cos2,cos3的大小关系是______________________.5.y=sin(3x-EQ\F(π,2))的周期是__________________.三、解答题6.求函数y=cos2x-4cosx+3的最值1.4.3正切函数的图像与性质课前预习学案一、预习目标利用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质二、预习内容1.画出下列各角的正切线:2.类比正弦函数我们用几何法做出正切函数图象:

3.把上述图象向左、右扩展,得到正切函数,且的图象,称“正切曲线”4.观察正切曲线,回答正切函数的性质:定义域:值域:最值:渐近线:周期性:奇偶性单调性:图像特征:三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标:会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。学习重难点:正切函数的图象及其主要性质。二、学习过程例1.讨论函数的性质变式训练1.求函数y=tan2x的定义域、值域和周期例2.求函数y=的定义域变式训练2.y=例3.比较tan与tan的大小变式训练3.tan与tan(-)三、反思总结1、数学知识:2、数学思想方法:四、当堂检测一、选择题1.函数的周期是()(A)(B)(C)(D)2.函数的定义域为()(A)(B)(C)(D)3.下列函数中,同时满足(1)在(0,)上递增,(2)以2为周期,(3)是奇函数的是()(A)(B)(C)(D)二、填空题4.tan1,tan2,tan3的大小关系是_______________________.5.给出下列命题:(1)函数y=sin|x|不是周期函数;(2)函数y=|cos2x+1/2|的周期是π/2;(3)函数y=tanx在定义域内是增函数;(4)函数y=sin(5π/2+x)是偶函数;(5)函数y=tan(2x+π/6)图象的一个对称中心为(π/6,0)其中正确命题的序号是_______________(注:把你认为正确命题的序号全填上)三、解答题6.求函数y=lg(1-tanx)的定义域课后练习与提高一、选择题1、在定义域上的单调性为().A.在整个定义域上为增函数B.在整个定义域上为减函数C.在每一个开区间上为增函数D.在每一个开区间上为增函数2、下列各式正确的是().A.B.C.D.大小关系不确定3、若,则().A.B.C.D.二、填空题4、函数的定义域为.5、函数的定义域为.三、解答题6、函数的定义域是().1.5函数的图象课前预习学案一、预习目标预习图像变换的过程,初步了解图像的平移。二、预习内容1.函数,(其中)的图象,可以看作是正弦曲线上所有的点_________(当>0时)或______________(当<0时)平行移动个单位长度而得到.2.函数(其中>0且)的图象,可以看作是把正弦曲线上所有点的横坐标______________(当>1时)或______________(当0<<1时)到原来的倍(纵坐标不变)而得到.3.函数>0且A1)的图象,可以看作是把正弦曲线上所有点的纵坐标___________(当A>1时)或__________(当0<A<1)到原来的A倍(横坐标不变)而得到的,函数y=Asinx的值域为______________.最大值为______________,最小值为______________.4.函数其中的(A>0,>0)的图象,可以看作用下面的方法得到:先把正弦曲线上所有的点___________(当>0时)或___________(当<0时)平行移动个单位长度,再把所得各点的横坐标____________(当>1时)或____________(当0<<1)到原来的倍(纵坐标不变),再把所得各点的纵横坐标____________(当A>1时)或_________(当0<A<1时到原来的A倍(横坐标不变)而得到.课内探究学案一、学习目标1.会用“五点法”作出函数以及函数的图象的图象。2.能说出对函数的图象的影响.3.能够将的图象变换到的图象,并会根据条件求解析式.学习重难点:重点:由正弦曲线变换得到函数的图象。难点:当时,函数与函数的关系。二、学习过程1、复习巩固;作业评讲——作出函数在一个周期内的简图并回顾作图方法?2、自主探究;问题一、函数图象的左右平移变换如在同一坐标系下,作出函数和的简图,并指出它们与图象之间的关系。问题二、函数图象的纵向伸缩变换如在同一坐标系中作出及的简图,并指出它们的图象与的关系。问题三、函数图象的横向伸缩变换如作函数及的简图,并指出它们与图象间的关系。问题四、作出函数的图象问题五、作函数的图象主要有以下两种方法:(1)用“五点法”作图(2)由函数的图象通过变换得到的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”。(三)规律总结①由正弦曲线变换到函数的图象需要进行三种变换,顺序可任意改变;先平移变换后周期变换时平移个单位,先周期变换后平移变换时平移个单位。②常用变换顺序——先平移变换再周期变换后振幅变换(平移的量只与有关)。(四)当堂检测1、请准确叙述由正弦曲线变换得到下列函数图象的过程?①②2、已知函数的图象为C,为了得到函数的图象,只需把C的所有点()A、横坐标伸长到原来的10倍,纵坐标不变。B、横坐标缩短到原来的倍,纵坐标不变。C、纵坐标伸长到原来的10倍,横坐标不变。D、纵坐标缩短到原来的倍,横坐标不变。3、已知函数的图象为C,为了得到函数的图象,只需把C的所有点()A、横坐标伸长到原来的4倍,纵坐标不变。B、横坐标缩短到原来的倍,纵坐标不变。C、纵坐标伸长到原来的4倍,横坐标不变。D、纵坐标缩短到原来的倍,横坐标不变。4、已知函数的图象为C,为了得到函数的图象,只需把C的所有点()A、向左平移个单位长度B、向右平移个单位长度C、向左平移个单位长度D、向右平移个单位长度5、将正弦曲线上各点向左平移个单位,再把横坐标伸长到原来的2倍,纵坐标不变,则所得图象解析式为()A、B、C、D、课后练习与提高一、选择题1、已知函数图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图形沿着x轴向左平移个单位,这样得到的曲线与的图象相同,那么已知函数的解析式为().A.B.C.D.2、把函数的图象向右平移后,再把各点横坐标伸长到原来的2倍,所得到的函数的解析式为().A.B.C.D.3、函数的图象,可由函数的图象经过下述________变换而得到().A.向右平移个单位,横坐标缩小到原来的,纵坐标扩大到原来的3倍B.向左平移个单位,横坐标缩小到原来的,纵坐标扩大到原来的3倍C.向右平移个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的D.向左平移个单位,横坐标缩小到原来的,纵坐标缩小到原来的4、函数的周期是_________,振幅是__________,当x=____________________时,__________;当x=____________________时,__________.5、已知函数(A>0,>0,0<)的两个邻近的最值点为()和(),则这个函数的解析式为____________________.6、已知函数(A>O,>0,<)的最小正周期是,最小值是-2,且图象经过点(),求这个函数的解析式.1.6三角函数模型的简单应用课前预习学案一、预习目标预习三角函数模型的简单问题,初步了解三角函数模型的简单应用二、预习内容1、三角函数可以作为描述现实世界中_________现象的一种数学模型.2、是以____________为周期的波浪型曲线.课内探究学案一、学习目标1、会用三角函数解决一些简单的问题,体会三角函数是描述周期变化现象的重要函数模型.2通过对三角函数的应用,发展数学应用意识,求对现实世界中蕴涵的一些数学模型进行思考和作出判断.学习重难点:重点:精确模型的应用——由图象求解析式,由解析式研究图象及性质难点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型二、学习过程自主探究;问题一、如图,某地一天从6~14时的温度变化曲线近似满足函数.(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式问题二、画出函数的图象并观察其周期.问题三、如图,设地球表面某地正午太阳高度角为,为此时太阳直射纬度,为该地的纬度值,那么这三个量之间的关系是.当地夏半年取正值,冬半年取负值.如果在北京地区(纬度数约为北纬)的一幢高为的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?三、当堂检测1、以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元,而该商品在商店的销售价格是在8元基础上按月随正弦曲线波动的,并已知5月份销售价最高为10元,9月份销售价最低为6元,假设某商店每月购进这种商品m件,且当月售完,请估计哪个月盈利最大?并说明理由.课后练习与提高1、设是某港口水的深度关于时间t(时)的函数,其中,下表是该港口某一天从0至24时记录的时间t与水深y的关系.t03691215182124y111.914.911.98.912.1经长期观察,函数的图象可以近似地看成函数的图象.根据上述数据,函数的解析式为()A.B.C.D.2、从高出海面hm的小岛A处看正东方向有一只船B,俯角为看正南方向的一船C的俯角为,则此时两船间的距离为().A.B.C.D.3、如图表示电流I与时间t的函数关系式:I=在同一周期内的图象。(1)根据图象写出I=的解析式;(2)为了使I=中t在任意-段秒的时间内电流I能同时取得最大值和最小值,那么正整数的最小值是多少?答案:预习内容:1、周期2、自主探究:问题二、问题三、解:A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点。要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度为-23°26′,依题意,两楼的间距不小于MC,根据太阳高度的定义,有:∠C=90°-|40°-(-23°26′)|=26°34′MC==2h0即盖楼时,为命使后楼不被前楼遮挡,要留出当于楼高两倍的间距。当堂检测:由条件可得:出厂价格函数为,销售价格函数为则利润函数为:所以,当时,Y=(2+)m,即6月份盈利最大.课后练习与提高1、A2、A3、解:(1)由图知A=300,,由得(2)问题等价于,即,∴正整数的最小值为314。2.1平面向量的实际背景及基本概念课前预习学案一、预习目标通过阅读教材初步了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.二、预习内容(一)、情景设置:ABCD如图,老鼠由AABCD结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?(二)、新课预习:1、向量的概念:我们把既有大小又有方向的量叫向量2、请同学阅读课本后回答:(可制作成幻灯片)数量与向量有何区别?如何表示向量?有向线段和线段有何区别和联系?分别可以表示向量的什么?长度为零的向量叫什么向量?长度为1的向量叫什么向量?满足什么条件的两个向量是相等向量?单位向量是相等向量吗?有一组向量,它们的方向相同或相反,这组向量有什么关系?如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.2、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.二、学习过程1、数量与向量的区别?-A(起点)A(起点)B(终点)a①②③④向量的大小――长度称为向量的模,记作。3.有向线段:具有方向的线段就叫做有向线段,三个要素:。向量与有向线段的区别:(1)。(2)。4、零向量、单位向量概念:①叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.②叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①叫平行向量;②我们规定0与平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:叫相等向量。说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,这是因为(与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.三、理解和巩固:例1书本86页例1.例2判断:(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?例3下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行例4如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.变式一:与向量长度相等的向量有多少个?变式二:是否存在与向量长度相等、方向相反的向量?变式三:与向量共线的向量有哪些?课堂练习:1.判断下列命题是否正确,若不正确,请简述理由.①向量与是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形当且仅当=⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.2.书本88页练习课后练习与提高1.下列各量中不是向量的是()A.浮力B.风速C.位移D.密度2.下列说法中错误的是()A.零向量是没有方向的B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()

A.一条线段B.一段圆弧C.圆上一群孤立点D.一个单位圆4.已知非零向量,若非零向量,则与必定.5.已知、是两非零向量,且与不共线,若非零向量与共线,则与必定.6.设在平面上给定了一个四边形ABCD,点K、L、M、N分别是AB、BC、CD、DA的中点,则2.2.1向量的加法运算及其几何意义课前预习学案预习目标:通过复习提问回顾向量定义及有关概念;利用问题情景提出向量加法运算、给出实际背景。预习内容:复习:提问向量的定义以及有关概念。强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置ABC2、情景设置:ABC(1)某人从A到B,再从B按原方向到C,CAB则两次的位移和:。CAB(2)若上题改为从A到B,再从B按反方向到C,ABC则两次的位移和:ABC(3)某车从A到B,再从B改变方向到C,ABC则两次的位移和:ABC(4)船速为,水速为,则两速度和:。3、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;学习过程:1、向量的加法:叫做向量的加法.2、三角形法则(“”)如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b,规定:。ABCa+bABCa+ba+baabbabba+ba探究:(1)两相向量的和仍是;(2)当向量与不共线时,+的方向,且|+|||+||;OABaaabbb(3)当与同向时,则+、、且|+|||+||,当与反向时,若||>||,则+的方向与相同,且|+|||-||;若||<||,则+的方向与相同,且|+b|||-||.OABaaabbb(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加3.例1、已知向量、,求作向量+作法:4.加法的交换律和平行四边形法则问题:上题中+的结果与+是否相同?从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:5.向量加法的结合律:证:6、应用举例:例二(P94—95)练习:P95课后练习与提高1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为,求水流的速度.2、一艘船距对岸,以的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km,求河水的流速.3、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是km/h,最小是km/h5、已知两个力F1,F2的夹角是直角,且已知它们的合力F与F1的夹角是60,|F|=10N求F1和F2的大小.6、用向量加法证明:两条对角线互相平分的四边形是平行四边形参考答案:略2.2.2向量的减法运算及其几何意义课前预习学案预习目标:复习回顾向量的加法法则及其运算律,为本节新授内容做好铺垫。预习内容:向量加法的法则:。ABDC向量加法的运算定律:ABDC例:在四边形中,CB+BA+BC=.解:CB+BA+BC=CB+BA+AD=CD.提出疑惑:向量有加法运算,那么它有减法吗?课内探究学案学习目标:1、了解相反向量的概念;2、掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3、通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.学习过程:一、提出课题:向量的减法用“相反向量”定义向量的减法“相反向量”的定义:。规定:零向量的相反向量仍是.-(-a)=a.任一向量与它的相反向量的和是.a+(-a)=0如果a、b互为相反向量,则a=-b,b=-a,a+b=0(3)向量减法的定义:.即:求两个向量差的运算叫做向量的减法.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b+x=a,则x叫做a与b的差,记作。求作差向量:已知向量a、b,求作向量∵(a-b)+b=a+(-b)+b=a+0=a作法:注意:1表示a-b.强调:差向量“箭头”指向2用“相反向量”定义法作差向量,a-b=。显然,此法作图较繁,但最后作图可统一.探究:如果从向量a的终点指向向量b的终点作向量,那么所得向量是。aabAABBB’OabaabbOAOBababBAOb2)若a∥b,如何作出a-b?二、例题:例1、(P97例三)已知向量a、b、c、d,求作向量a-b、c-d.例2、平行四边形中,a,b,用a、b表示向量、.变式一:当a,b满足什么条件时,a+b与ab垂直?(|a|=|b|)变式二:当a,b满足什么条件时,|a+b|=|ab|?(a,b互相垂直)变式三:a+b与ab可能是相当向量吗?(不可能,∵对角线方向不同)课后练习与提高1.在△ABC中,=a,=b,则等于()A.a+bB.-a+(-b)C.a-bD.b-a2.O为平行四边形ABCD平面上的点,设=a,=b,=c,=d,则A.a+b+c+d=0B.a-b+c-d=0C.a+b-c-d=0D.a-b-c+d=03.如图,在四边形ABCD中,根据图示填空:a+b=,b+c=,c-d=,a+b+c-d=.4、如图所示,O是四边形ABCD内任一点,试根据图中给出的向量,确定a、b、c、d的方向(用箭头表示),使a+b=,c-d=,并画出b-c和a+d.参考答案:1、D2、D3、f,e,f,04、略2.2.3向量数乘运算及其几何意义课前预习学案预习目标:通过对比物理中的一些向量与数量之间的运算关系,引入向量与数量之间的乘法运算,同时也为该运算赋予其物理意义。预习内容:引入:位移、力、速度、加速度等都是向量,而时间、质量等都是数量,这些向量与数量的关系常常在物理公式中体现。如力与加速度的关系,位移与速度的关系。这些公式都是实数与向量间的关系。师:我们已经学习了向量的加法,请同学们作出和向量,并请同学们指出相加后,和的长度与方向有什么变化?这些变化与哪些因素有关?生:师:很好!本节课我们就来讨论实数与向量的乘积问题,(板书课题:实数与向量的乘积)课内探究学案学习目标:1.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算;2.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行;3.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想。学习过程:1、探索研究1)定义:请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积?(可结合教材思考)可根据小学算术中的解释,类比规定:实数与向量的积就是,它还是一个向量,但要对实数与向量相乘的含义作一番解释才行。实数与向量的积是一个向量,记作.它的长度和方向规定如下:(1).(2).2)运算律:问:求作向量和(为非零向量)并进行比较,向量与向量相等吗?(引导学生从模的大小与方向两个方面进行比较)生:.师:设、为任意向量,、为任意实数,则有:(1);(2);(3).通常将(2)称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论