版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省辽师大附中高考模拟考试(二模)数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数().A.6 B.5 C.4 D.32.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. B. C. D.3.双曲线的渐近线方程为()A. B. C. D.4.已知a>b>0,c>1,则下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.5.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为A. B. C. D.6.设为锐角,若,则的值为()A. B. C. D.7.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.8.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.9.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.20 B.27 C.54 D.6410.函数在上的图象大致为()A. B. C. D.11.设为抛物线的焦点,,,为抛物线上三点,若,则().A.9 B.6 C. D.12.已知角的终边经过点,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率.现在半径为1的圆内任取一点,则该点取自其内接正十二边形内部的概率为________.14.对任意正整数,函数,若,则的取值范围是_________;若不等式恒成立,则的最大值为_________.15.从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____________.16.设实数,若函数的最大值为,则实数的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)解不等式;(2)若均为正实数,且满足,为的最小值,求证:.18.(12分)据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.19.(12分)已知函数.(1)若在处导数相等,证明:;(2)若对于任意,直线与曲线都有唯一公共点,求实数的取值范围.20.(12分)已知函数,为的导数,函数在处取得最小值.(1)求证:;(2)若时,恒成立,求的取值范围.21.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.22.(10分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【题目详解】由已知,,又三角形有一个内角为,所以,,解得或(舍),故,当时,取得最大值,所以.故选:C.【题目点拨】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.2、D【解题分析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.【题目详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.故选:D.【题目点拨】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.3、C【解题分析】
根据双曲线的标准方程,即可写出渐近线方程.【题目详解】双曲线,双曲线的渐近线方程为,故选:C【题目点拨】本题主要考查了双曲线的简单几何性质,属于容易题.4、B【解题分析】
根据函数单调性逐项判断即可【题目详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为y=cx为增函数,且a>b,所以ca>cb,正确对C,因为y=xc为增函数,故,错误;对D,因为在为减函数,故,错误故选B.【题目点拨】本题考查了不等式的基本性质以及指数函数的单调性,属基础题.5、D【解题分析】
由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可.【题目详解】解:如图,
∵点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小,
∴
设正方体的棱长为,则,∴.
取,连接,则共面,在中,设到的距离为,
设到平面的距离为,
.
故选D.【题目点拨】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.6、D【解题分析】
用诱导公式和二倍角公式计算.【题目详解】.故选:D.【题目点拨】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.7、B【解题分析】
由双曲线的对称性可得即,又,从而可得的渐近线方程.【题目详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【题目点拨】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.8、C【解题分析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【题目详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【题目点拨】本题考查三角函数的周期与频率,考查理解分析能力.9、B【解题分析】
设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【题目详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【题目点拨】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。10、C【解题分析】
根据函数的奇偶性及函数在时的符号,即可求解.【题目详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,,,排除选项D,故选:C.【题目点拨】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.11、C【解题分析】
设,,,由可得,利用定义将用表示即可.【题目详解】设,,,由及,得,故,所以.故选:C.【题目点拨】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.12、D【解题分析】因为角的终边经过点,所以,则,即.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求出圆内接正十二边形的面积和圆的面积,再用几何概型公式求出即可.【题目详解】半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,∴该正十二边形的面积为,根据几何概型公式,该点取自其内接正十二边形的概率为,故答案为:.【题目点拨】本小题主要考查面积型几何概型的计算,属于基础题.14、【解题分析】
将代入求解即可;当为奇数时,,则转化为,设,由单调性求得的最小值;同理,当为偶数时,,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【题目详解】由题,,解得.当为奇数时,,由,得,而函数为单调递增函数,所以,所以;当为偶数时,,由,得,设,,单调递增,,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【题目点拨】本题考查利用导函数求最值,考查分类讨论思想和转化思想.15、【解题分析】
基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,由此能求出概率.【题目详解】解:从编号为,,,的张卡片中随机抽取一张,放回后再随机抽取一张,基本事件总数,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,分别为:,,,,,,,.所以第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为.故答案为.【题目点拨】本题考查概率的求法,考查古典概型、列举法等基础知识,属于基础题.16、【解题分析】
根据,则当时,,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.【题目详解】因为,又当时,,即.当时,显然成立;当时,由等价于,令,,当时,,单调递增,当时,,单调递减,,则,又,得,因此的最大值为.故答案为:【题目点拨】本题主要考查导数在函数中的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)证明见解析【解题分析】
(1)将写成分段函数的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,证得不等式成立.【题目详解】(1)当时,恒成立,解得;当时,由,解得;当时,由解得所以的解集为或(2)由(1)可求得最小值为,即因为均为正实数,且(当且仅当时,取“”)所以,即.【题目点拨】本小题主要考查绝对值不等式的求法,考查利用基本不等式证明不等式,属于中档题.18、(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【解题分析】
(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后可得结果.(3)计算退化林修复面积超过一万公顷的地区中选两个地区总数,退化林修复面积超过六万公顷的地区的个数为,列出所有取值并计算相应概率,然后可得结果.【题目详解】(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2)记事件A:在这十个地区中,任选一个地区,该地区新封山育林面积占总面积的比值超过根据数据可知:青海地区人工造林面积占总面积比超过,则(3)退化林修复面积超过一万公顷有6个地区:内蒙、河北、河南、重庆、陕西、新疆,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,,随机变量X的分布列如下:【题目点拨】本题考查数据的处理以及离散型随机变量的分布列与数学期望,审清题意,细心计算,属基础题.19、(I)见解析(II)【解题分析】
(1)由题x>0,,由f(x)在x=x1,x2(x1≠x2)处导数相等,得到,得,由韦达定理得,由基本不等式得,得,由题意得,令,则,令,,利用导数性质能证明.(2)由得,令,利用反证法可证明证明恒成立.由对任意,只有一个解,得为上的递增函数,得,令,由此可求的取值范围..【题目详解】(I)令,得,由韦达定理得即,得令,则,令,则,得(II)由得令,则,,下面先证明恒成立.若存在,使得,,,且当自变量充分大时,,所以存在,,使得,,取,则与至少有两个交点,矛盾.由对任意,只有一个解,得为上的递增函数,得,令,则,得【题目点拨】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题.20、(1)见解析;(2).【解题分析】
(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,,分析可得的最小值为,分,讨论即得解.【题目详解】(1)由题意,令,则,知为的增函数,因为,,所以,存在使得,即.所以,当时,为减函数,当时,为增函数,故当时,取得最小值,也就是取得最小值.故,于是有,即,所以有,证毕.(2)由(1)知,的最小值为,①当,即时,为的增函数,所以,,由(1)中,得,即.故满足题意.②当,即时,有两个不同的零点,,且,即,若时,为减函数,(*)若时,为增函数,所以的最小值为.注意到时,,且此时,(ⅰ)当时,,所以,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸袋制作课件教学课件
- 防蜇课件教学课件
- 获奖 课件教学课件
- 2024年度农产品收购合同
- 2024年企业安全评价与咨询服务合同
- 2024年度空气能设备安装与验收合同
- 2024国际快递服务全面合作协议
- 2024桩基工程施工合同范本桩基工程施工合同
- 2024年企业合并收购协议
- 2024个人租房的合同模板范本
- (2024年)传染病培训课件
- 各系统调试报告
- 英语人称代词-物主代词-名词所有格(共4页)
- 《质量管理体系文件》ISO9001_2015_中英文对照
- 漂流项目规划设计书
- 中国花鸟画各个时期艺术特点探析
- 木霉菌生防综述
- 劳动合同厦门市人力资源和社会保障局制
- 【教案】《认识计算机硬件设备及作用》教学设计
- 个人房屋租赁合同和押金房租收据(最新整理)
- 卧式车床电气控制电路设计毕业设计
评论
0/150
提交评论