版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省商洛市洛南中学2024届下学期高三数学试题1月阶段测试考试试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为()A. B. C. D.2.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.3.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.4.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.5.已知函数,,则的极大值点为()A. B. C. D.6.若复数满足(为虚数单位),则其共轭复数的虚部为()A. B. C. D.7.设复数满足,则()A.1 B.-1 C. D.8.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则A. B. C. D.9.已知函数在上有两个零点,则的取值范围是()A. B. C. D.10.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.11.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为()A. B.C. D.12.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题二、填空题:本题共4小题,每小题5分,共20分。13.若复数(是虚数单位),则________14.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.15.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.16.设Sn为数列{an}的前n项和,若an0,a1=1,且2Sn=an(an+t),n∈N*,则S10=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是直角梯形,,,,是正三角形,,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.18.(12分)已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含,求实数的取值范围.19.(12分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.20.(12分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:21.(12分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.22.(10分)已知函数和的图象关于原点对称,且.(1)解关于的不等式;(2)如果对,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【题目详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【题目点拨】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.2、B【解题分析】
将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【题目详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【题目点拨】本题主要考查了枚举法求古典概型的方法,属于基础题型.3、A【解题分析】
根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【题目详解】依题意,得,故,故,,,则.故选:A.【题目点拨】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.4、A【解题分析】
由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【题目详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.【题目点拨】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.5、A【解题分析】
求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.【题目详解】因为,故可得,令,因为,故可得或,则在区间单调递增,在单调递减,在单调递增,故的极大值点为.故选:A.【题目点拨】本题考查利用导数求函数的极值点,属基础题.6、D【解题分析】
由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【题目详解】由zi=1﹣i,∴z=,所以共轭复数=-1+,虚部为1故选D.【题目点拨】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.7、B【解题分析】
利用复数的四则运算即可求解.【题目详解】由.故选:B【题目点拨】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.8、B【解题分析】
由题意知,,由,知,由此能求出.【题目详解】由题意知,,,解得,,.故选:B.【题目点拨】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.9、C【解题分析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【题目详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【题目点拨】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.10、D【解题分析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【题目详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【题目点拨】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.11、A【解题分析】
点的坐标为,,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【题目详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,.所以双曲线的方程为.故选:【题目点拨】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.12、B【解题分析】
由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【题目详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【题目点拨】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
直接根据复数的代数形式四则运算法则计算即可.【题目详解】,.【题目点拨】本题主要考查复数的代数形式四则运算法则的应用.14、【解题分析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【题目详解】因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:【题目点拨】本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.15、【解题分析】
连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【题目详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率.故答案为:【题目点拨】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.16、55【解题分析】
由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【题目详解】由题意,当n=1时,,当时,由,可得,两式相减,可得,整理得,,即,∴数列是以1为首项,1为公差的等差数列,.故答案为:55.【题目点拨】本题考查求数列的前项和,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解题分析】
(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即(2)以为坐标原点,的方向为轴的正方向,建空间直角坐标系,分别计算各个点坐标,计算平面法向量,利用向量的夹角公式得到直线与平面所成角的正弦值.【题目详解】(1)证明:设是的中点,连接、,是的中点,,,,,,,是平行四边形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,过点作,垂足为,平面,以为坐标原点,的方向为轴的正方向,建立如图的空间直角坐标系,则,,,,设是平面的一个法向量,则,,令,则,,,直线与平面所成角的正弦值为.【题目点拨】本题考查了线面垂直,线线垂直,利用空间直角坐标系解决线面夹角问题,意在考查学生的空间想象能力和计算能力.18、(1)(2)【解题分析】
(1)按进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为在时恒成立,按和分类讨论,分别得到不等式恒成立时对应的的范围,再取交集,得到答案.【题目详解】解:(1)当时,等价于或或,解得或或,所以不等式的解集为:.(2)依题意即在时恒成立,当时,,即,所以对恒成立∴,得;当时,,即,所以对任意恒成立,∴,得∴,综上,.【题目点拨】本题考查分类讨论解绝对值不等式,分类讨论研究不等式恒成立问题,属于中档题.19、(1);(2).【解题分析】
(1)根据题意,求得,,因而得出,利用降幂公式和二倍角的正弦公式化简函数,最后利用,求出的最小正周期;(2)由(1)得,再利用整体代入求出函数的值域.【题目详解】(1)因为,,所以,,所以函数的最小正周期为.(2)因为,所以,所以,故函数在区间上的值域为.【题目点拨】本题考查正弦型函数的周期和值域,运用到向量的坐标运算、降幂公式和二倍角的正弦公式,考查化简和计算能力.20、(I)详见解析;(II)2【解题分析】
(I)求导得到f'(x)=ex-a,讨论a≤0(II)f12=e-12a-5【题目详解】(I)f(x)=ex-ax当a≤0时,f'(x)=e当a>0时,f'(x)=ex-a=0,x=lna当x∈lna,+∞时,综上所述:a≤0时,fx在R上单调递增;a>0时,fx在-∞,ln(II)f(x)=ex-ax-bf12=现在证明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故当x∈0,+∞上时,x2+1f'x在x∈0,+∞上单调递增,故fx在0,12上单调递减,在1综上所述:a+5b的最大值为【题目点拨】本题考查了函数单调性,函数的最值问题,意在考查学生的计算能力和综合应用能力.21、(1)证明见解析(2)【解题分析】
(1)根据题意,连接交于,连接,利用三角形全等得,进而可得结论;(2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角的余弦值.【题目详解】(1)证明:连接交于,连接,,≌,且,面面,面,(2)取中点,连,.由,面面面,又由,以分别为轴建立如图所示空间直角坐标系,设,则,,,,,,为面的一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度劳动合同及福利条款详细规定2篇
- 2024家电试用合同范本
- 2024年度墙地砖招标投标合同
- 2024年度桥梁工程智能化运维管理服务合同2篇
- 设备购买合同审查表
- 庆典活动礼仪服务提供方协议
- 个人借款合同设计
- 盆栽花卉交易合同
- 建筑工程防水劳务分包协议
- 经销商业务合作合同
- 《荔枝》幼儿园小学少儿美术教育绘画课件创意教程教案模板
- 全过程工程咨询投标方案(技术方案)
- 小学英语作文范文30篇(完整版)
- 7《兼爱》同步练习(含解析)高中语文统编版选择性必修上册-2
- 河道清淤运输合同范本
- DL∕ T 1310-2022 架空输电线路旋转连接器
- 股权转让谈判纪要样式
- 《太阳爱吃冰淇淋》
- 业主退房申请书
- 口腔设备行业市场发展分析及发展趋势前景预测报告
- JT-T-1218.2-2018城市轨道交通运营设备维修与更新技术规范第2部分:车辆
评论
0/150
提交评论