山东青岛市2024届高三二模冲刺数学试题(一)_第1页
山东青岛市2024届高三二模冲刺数学试题(一)_第2页
山东青岛市2024届高三二模冲刺数学试题(一)_第3页
山东青岛市2024届高三二模冲刺数学试题(一)_第4页
山东青岛市2024届高三二模冲刺数学试题(一)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东青岛市2024届高三二模冲刺数学试题(一)请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知向量,,若,则()A. B. C.-8 D.83.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.4.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.B.C.D.5.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.6.已知向量,,则与的夹角为()A. B. C. D.7.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()A. B. C. D.8.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.9.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A. B.1 C. D.10.已知是定义在上的奇函数,当时,,则()A. B.2 C.3 D.11.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()A. B. C. D.12.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若函数恰有4个零点,则实数的取值范围是________.14.函数的定义域是__________.15.若x,y满足,且y≥−1,则3x+y的最大值_____16.如图是一个几何体的三视图,若它的体积是,则_________,该几何体的表面积为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.18.(12分)已知是圆:的直径,动圆过,两点,且与直线相切.(1)若直线的方程为,求的方程;(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.19.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.20.(12分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.21.(12分)已知向量,.(1)求的最小正周期;(2)若的内角的对边分别为,且,求的面积.22.(10分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

利用充分必要条件的定义可判断两个条件之间的关系.【题目详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【题目点拨】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.2、B【解题分析】

先求出向量,的坐标,然后由可求出参数的值.【题目详解】由向量,,则,,又,则,解得.故选:B【题目点拨】本题考查向量的坐标运算和模长的运算,属于基础题.3、D【解题分析】

先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【题目详解】由题意,则,,得,由定义知,故选:D.【题目点拨】此题考查向量的坐标运算,引入新定义,属于简单题目.4、D【解题分析】

如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【题目详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,,.故,故,.故选:.【题目点拨】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.5、C【解题分析】

由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【题目详解】解:由,翻折后得到,又,则面,可知.又因为,则面,于是,因此三棱锥外接球球心是的中点.计算可知,则外接球半径为1,从而外接球表面积为.故选:C.【题目点拨】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.6、B【解题分析】

由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【题目详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.【题目点拨】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.7、C【解题分析】

直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.【题目详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,∴,点B的横坐标为,∴点B的坐标为,把代入直线,解得,故选:C.【题目点拨】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.8、C【解题分析】

根据椭圆的定义可得,,再利用余弦定理即可得到结论.【题目详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【题目点拨】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.9、D【解题分析】

建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【题目详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【题目点拨】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.10、A【解题分析】

由奇函数定义求出和.【题目详解】因为是定义在上的奇函数,.又当时,,.故选:A.【题目点拨】本题考查函数的奇偶性,掌握奇函数的定义是解题关键.11、A【解题分析】

由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【题目详解】由已知可得,,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,,所以;当轴时,,所以,又为锐角三角形,所以.故选:A.【题目点拨】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.12、B【解题分析】

通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【题目详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【题目点拨】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象,利用数形结合思想进行求解即可.【题目详解】函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象如下图所示:由图象可知:实数的取值范围是.故答案为:【题目点拨】本题考查了已知函数零点个数求参数取值范围问题,考查了数形结合思想和转化思想.14、【解题分析】由,得,所以,所以原函数定义域为,故答案为.15、5.【解题分析】

由约束条件作出可行域,令z=3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由题意作出可行域如图阴影部分所示.设,当直线经过点时,取最大值5.故答案为:5【题目点拨】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.16、;【解题分析】试题分析:如图:此几何体是四棱锥,底面是边长为的正方形,平面平面,并且,,所以体积是,解得,四个侧面都是直角三角形,所以计算出边长,表面积是考点:1.三视图;2.几何体的表面积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【题目详解】(1)过点交于点,连接,如下图所示:因为平面平面,且交线为,又四边形为正方形,故可得,故可得平面,又平面,故可得.在三角形中,因为为中点,,故可得//,为中点;又因为四边形为等腰梯形,是的中点,故可得//;又,且平面,平面,故面面,又因为平面,故面.即证.(2)连接,,作交于点,由(1)可知平面,又因为//,故可得平面,则;又因为//,,故可得即,,两两垂直,则分别以,,为,,轴建立空间直角坐标系,则,,,,,,设面的法向量为,则,,则,可取,设平面的法向量为,则,,则,可取,可知平面与平面所成的锐二面角的余弦值为.【题目点拨】本题考查由面面平行推证线面平行,涉及用向量法求二面角的大小,属综合基础题.18、(1)或.(2)存在,;【解题分析】

(1)根据动圆过,两点,可得圆心在的垂直平分线上,由直线的方程为,可知在直线上;设,由动圆与直线相切可得动圆的半径为;又由,及垂径定理即可确定的值,进而确定圆的方程.(2)方法一:设,可得圆的半径为,根据,可得方程为并化简可得的轨迹方程为.设,,可得的中点,进而由两点间距离公式表示出半径,表示出到轴的距离,代入化简即可求得的值,进而确定所过定点的坐标;方法二:同上可得的轨迹方程为,由抛物线定义可求得,表示出线段的中点的坐标,根据到轴的距离可得等量关系,进而确定所过定点的坐标.【题目详解】(1)因为过点,,所以圆心在的垂直平分线上.由已知的方程为,且,关于于坐标原点对称,所以在直线上,故可设.因为与直线相切,所以的半径为.由已知得,,又,故可得,解得或.故的半径或,所以的方程为或.(2)法一:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,,则得,的中点,则以为直径的圆的半径为:,到轴的距离为,令,①化简得,即,故当时,①式恒成立.所以存在定点,使得以为直径的圆与轴相切.法二:设,由已知得的半径为,.由于,故可得,化简得的轨迹方程为.设,因为抛物线的焦点坐标为,点在抛物线上,所以,线段的中点的坐标为,则到轴的距离为,而,故以为径的圆与轴切,所以当点与重合时,符合题意,所以存在定点,使得以为直径的圆与轴相切.【题目点拨】本题考查了圆的标准方程求法,动点轨迹方程的求法,抛物线定义及定点问题的解法综合应用,属于难题.19、(1);(2).【解题分析】

(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【题目详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【题目点拨】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.20、(1)(2)直线过定点【解题分析】

设.(1)由题意知,.设直线的方程为,由得,则,由根与系数的关系可得,所以.由,得,解得.所以抛物线的方程为.(2)设直线的方程为,由得,由根与系数的关系可得,所以,解得.所以直线的方程为,所以时,直线过定点.21、(1);(2)或【解题分析】

(1)利用平面向量数量积的坐标运算可得,利用正弦函数的周期性即可求解;(2)由(1)可求,结合范围,可求的值,由余弦定理可求的值,进而根据三角形的面积公式即可求解.【题目详解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或当时,由余弦定理得即,解得.此时.当时,由余弦定理得.即,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论