版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省六地市部分学校第二学期期末教学质量检测试题高三数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,且,则()A. B. C. D.2.若复数满足(是虚数单位),则()A. B. C. D.3.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-284.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为()①②③④⑤A.1个 B.2个 C.3个 D.4个5.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.6.定义在上的函数满足,则()A.-1 B.0 C.1 D.27.双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为()A. B. C. D.8.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.29.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.10.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.11.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是()A. B. C. D.12.已知满足,,,则在上的投影为()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则___,___.14.设满足约束条件且的最小值为7,则=_________.15.已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为__________.16.已知数列的前项和为,,则满足的正整数的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,解不等式;(2)若的解集为,,求证:.18.(12分)已知不等式对于任意的恒成立.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.19.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.20.(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.02421.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.22.(10分)如图,在四棱锥中底面是菱形,,是边长为的正三角形,,为线段的中点.求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.2、B【解题分析】
利用复数乘法运算化简,由此求得.【题目详解】依题意,所以.故选:B【题目点拨】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.3、A【解题分析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.4、B【解题分析】
满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【题目详解】满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);③不满足(2);④⑤均满足(1)(2).故选:B.【题目点拨】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.5、B【解题分析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【题目详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.【题目点拨】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.6、C【解题分析】
推导出,由此能求出的值.【题目详解】∵定义在上的函数满足,∴,故选C.【题目点拨】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.7、A【解题分析】
根据题意得到,化简得到,得到答案.【题目详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【题目点拨】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.8、B【解题分析】
根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【题目详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【题目点拨】本题主要考查了等比数列下标和性质以应用,属于中档题.9、C【解题分析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【题目详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.【题目点拨】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.10、B【解题分析】
由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【题目详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【题目点拨】本题考查了利用三视图求几何体体积的问题,是基础题.11、D【解题分析】
由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.【题目详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【题目点拨】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.12、A【解题分析】
根据向量投影的定义,即可求解.【题目详解】在上的投影为.故选:A【题目点拨】本题考查向量的投影,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、10900【解题分析】
由题意列出方程组,求解即可.【题目详解】由题意可得,解得.故答案为10900【题目点拨】本题主要考查二元一次方程组的解法,用消元法来求解即可,属于基础题型.14、3【解题分析】
根据约束条件画出可行域,再把目标函数转化为,对参数a分类讨论,当时显然不满足题意;当时,直线经过可行域中的点A时,截距最小,即z有最小值,再由最小值为7,得出结果;当时,的截距没有最小值,即z没有最小值;当时,的截距没有最大值,即z没有最小值,综上可得出结果.【题目详解】根据约束条件画出可行域如下:由,可得出交点,由可得,当时显然不满足题意;当即时,由可行域可知当直线经过可行域中的点A时,截距最小,即z有最小值,即,解得或(舍);当即时,由可行域可知的截距没有最小值,即z没有最小值;当即时,根据可行域可知的截距没有最大值,即z没有最小值.综上可知满足条件时.故答案为:3.【题目点拨】本题主要考查线性规划问题,约束条件和目标函数中都有参数,要对参数进行讨论.15、【解题分析】
考查更为一般的问题:设P为椭圆C:上的动点,为椭圆的两个焦点,为△PF1F2的内心,求点I的轨迹方程.解法一:如图,设内切圆I与F1F2的切点为H,半径为r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,则.直线IF1与IF2的斜率之积:,而根据海伦公式,有△PF1F2的面积为因此有.再根据椭圆的斜率积定义,可得I点的轨迹是以F1F2为长轴,离心率e满足的椭圆,其标准方程为.解法二:令,则.三角形PF1F2的面积:,其中r为内切圆的半径,解得.另一方面,由内切圆的性质及焦半径公式得:从而有.消去θ得到点I的轨迹方程为:.本题中:,代入上式可得轨迹方程为:.16、6【解题分析】
已知,利用,求出通项,然后即可求解【题目详解】∵,∴当时,,∴;当时,,∴,故数列是首项为-2,公比为2的等比数列,∴.又,∴,∴,∴.【题目点拨】本题考查通项求解问题,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解题分析】
(1)当时,将所求不等式变形为,然后分、、三段解不等式,综合可得出原不等式的解集;(2)先由不等式的解集求得实数,可得出,将代数式变形为,将与相乘,展开后利用基本不等式可求得的最小值,进而可证得结论.【题目详解】(1)当时,不等式为,且.当时,由得,解得,此时;当时,由得,该不等式不成立,此时;当时,由得,解得,此时.综上所述,不等式的解集为;(2)由,得,即或,不等式的解集为,故,解得,,,,,当且仅当,时取等号,.【题目点拨】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式,考查推理能力与计算能力,属于中等题.18、(1)(2)证明见解析【解题分析】
(1)法一:,,得,则,由此可得答案;法二:由题意,令,易知是偶函数,且时为增函数,由此可得出答案;(2)由(1)知,,即,结合“1”的代换,利用基本不等式即可证明结论.【题目详解】解:(1)法一:(当且仅当时取等号),又(当且仅当时取等号),所以(当且仅当时取等号),由題意得,则,解得,故的取值范围是;法二:因为对于任意恒有成立,即,令,易知是偶函数,且时为增函数,所以,即,则,解得,故的取值范围是;(2)由(1)知,,即,∴,故不等式成立.【题目点拨】本题主要考查绝对值不等式的恒成立问题,考查基本不等式的应用,属于中档题.19、(1)在为增函数;证明见解析(2)【解题分析】
(1)令,求出,可推得,故在为增函数;(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.【题目详解】(1)当时,.记,则,当时,,.所以,所以在单调递增,所以.因为,所以,所以在为增函数.(2)由题意,得,记,则,令,则,当时,,,所以,所以在为增函数,即在单调递增,所以.①当,,恒成立,所以为增函数,即在单调递增,又,所以,所以在为增函数,所以所以满足题意.②当,,令,,因为,所以,故在单调递增,故,即.故,又在单调递增,由零点存在性定理知,存在唯一实数,,当时,,单调递减,即单调递减,所以,此时在为减函数,所以,不合题意,应舍去.综上所述,的取值范围是.【题目点拨】本题主要考查了导数的综合应用,利用导数研究函数的单调性、最值和零点及不等式恒成立等问题,考查化归与转化思想、分类与整合思想、函数与方程思想,考查了学生的逻辑推理和运算求解能力,属于难题.20、(1)见解析;(2)在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”(3)见解析.【解题分析】
(1)由已知抽取的人中优秀人数为20,这样结合已知可得列联表;(2)根据列联表计算,比较后可得;(3)由于性别对结果有影响,因此用分层抽样法.【题目详解】解:(1)优秀合格总计男生62228女生141832合计204060(2)由于,因此在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”.(3)由(2)可知性别有可能对是否优秀有影响,所以采用分层抽样按男女生比例抽取一定的学生,这样得到的结果对学生在该维度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高考英语3500词汇第64天 swing-test(学生版)
- 氨气中毒病因介绍
- (高考英语作文炼句)第3篇译文老师笔记
- 开题报告:指向核心素养的青少年音乐创造力培养模式研究
- 悬挑式脚手架专项施工方案(专家论证)
- 呼和浩特市某实验楼工程施工组织设计方案
- 开题报告:学校家庭社会协同育人机制研究
- 《催化剂表征与测试》课件
- 开题报告:新工科导向下民办高校OBE实验实训教学规范的构建与实践-以生态环境产业学院为例
- 《检测综合应用》课件
- 《区域农业的发展》课件
- 临床护理实践指南2024版
- 2024年下半年包钢(集团)公司新员工招聘【941人】易考易错模拟试题(共500题)试卷后附参考答案
- 第21课《小圣施威降大圣》课件-2024-2025学年七年级语文上册同步备课课件(统编版2024)
- 疫情盒饭配送合同模板
- 易制毒化学品安全培训培训课件
- 上海市安全员-C3证(专职安全员-综合类)证考试题及答案
- 2024年度国际旅游文化节承办合同
- 糖尿病与骨质疏松症
- 高压电气设备预防性试验(电气设备1)
- 老年病科重点专科建设
评论
0/150
提交评论