2024届浙江省高中发展共同体高三下学期期中考试数学试题理试题_第1页
2024届浙江省高中发展共同体高三下学期期中考试数学试题理试题_第2页
2024届浙江省高中发展共同体高三下学期期中考试数学试题理试题_第3页
2024届浙江省高中发展共同体高三下学期期中考试数学试题理试题_第4页
2024届浙江省高中发展共同体高三下学期期中考试数学试题理试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省高中发展共同体高三下学期期中考试数学试题理试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A. B. C. D.2.函数在上的图象大致为()A. B. C. D.3.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为 B. C.的共轭复数为 D.为纯虚数4.设是定义域为的偶函数,且在单调递增,,则()A. B.C. D.5.已知复数满足,则()A. B. C. D.6.函数(),当时,的值域为,则的范围为()A. B. C. D.7.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.8.计算等于()A. B. C. D.9.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占2019年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的()A.倍 B.倍 C.倍 D.倍10.函数fxA. B.C. D.11.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.12.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.26二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象在处的切线斜率为,则______.14.已知椭圆C:1(a>b>0)的左、右焦点分别为F1,F2,椭圆的焦距为2c,过C外一点P(c,2c)作线段PF1,PF2分别交椭圆C于点A、B,若|PA|=|AF1|,则_____.15.设为正实数,若则的取值范围是__________.16.已知向量,且,则实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.18.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且.(1)求点的坐标;(2)求的取值范围.19.(12分)已知数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)证明:.20.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.21.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.22.(10分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【题目详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【题目点拨】本题考查三角形面积公式的应用,考查阅读分析能力.2、C【解题分析】

根据函数的奇偶性及函数在时的符号,即可求解.【题目详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,,,排除选项D,故选:C.【题目点拨】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.3、D【解题分析】

将复数整理为的形式,分别判断四个选项即可得到结果.【题目详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【题目点拨】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.4、C【解题分析】

根据偶函数的性质,比较即可.【题目详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【题目点拨】本题考查对数的运算及偶函数的性质,是基础题.5、A【解题分析】

由复数的运算法则计算.【题目详解】因为,所以故选:A.【题目点拨】本题考查复数的运算.属于简单题.6、B【解题分析】

首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【题目详解】因为,所以,若值域为,所以只需,∴.故选:B【题目点拨】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.7、B【解题分析】

先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【题目详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【题目点拨】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.8、A【解题分析】

利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【题目详解】原式.故选:A【题目点拨】本小题主要考查诱导公式,考查对数运算,属于基础题.9、B【解题分析】

设贫困户总数为,利用表中数据可得脱贫率,进而可求解.【题目详解】设贫困户总数为,脱贫率,所以.故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.故选:B【题目点拨】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.10、A【解题分析】

由f12=e-14>0排除选项D;【题目详解】由f12=e-14>0,可排除选项D,f-1=-e【题目点拨】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→011、B【解题分析】

由,,三点共线,可得,转化,利用均值不等式,即得解.【题目详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B【题目点拨】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、D【解题分析】

利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【题目详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【题目点拨】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先对函数f(x)求导,再根据图象在(0,f(0))处切线的斜率为﹣4,得f′(0)=﹣4,由此可求a的值.【题目详解】由函数得,∵函数f(x)的图象在(0,f(0))处切线的斜率为﹣4,,.故答案为4【题目点拨】本题考查了根据曲线上在某点切线方程的斜率求参数的问题,属于基础题.14、【解题分析】

根据条件可得判断OA∥PF2,且|PF2|=2|OA|,从而得到点A为椭圆上顶点,则有b=c,解出B的坐标即可得到比值.【题目详解】因为|PA|=|AF1|,所以点A是线段PF1的中点,又因为点O为线段F1F2的中点,所以OA∥PF2,且|PF2|=2|OA|,因为点P(c,2c),所以PF2⊥x轴,则|PF2|=2c,所以OA⊥x轴,则点A为椭圆上顶点,所以|OA|=b,则2b=2c,所以b=c,ac,设B(c,m)(m>0),则,解得mc,所以|BF2|c,则.故答案为:2.【题目点拨】本题考查椭圆的基本性质,考查直线位置关系的判断,方程思想,属于中档题.15、【解题分析】

根据,可得,进而,有,而,令,得到,再用导数法求解,【题目详解】因为,所以,所以,所以,所以,令,,所以,当时,,当时,所以当时,取得最大值,又,所以取值范围是,故答案为:【题目点拨】本题主要考查基本不等式的应用和导数法求最值,还考查了运算求解的能力,属于难题,16、【解题分析】∵=(1,2),=(x,1),则=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.点睛:由向量的数乘和坐标加减法运算求得,然后利用向量共线的坐标表示列式求解x的值.若=(a1,a2),=(b1,b2),则⊥⇔a1a2+b1b2=1,∥⇔a1b2﹣a2b1=1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布见解析,期望为;(2).【解题分析】

(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【题目详解】(1)由题意知,随机变量X的可能取值为10,20,40且,,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60=20×3=40+10+10,所以.【题目点拨】本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.18、(1);(2).【解题分析】

(1)设出的坐标,代入,结合在抛物线上,求得两点的横坐标,进而求得点的坐标.(2)设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,结合,求得的表达式,结合二次函数的性质求得的取值范围.【题目详解】(1)可知,设则,又,所以解得所以.(2)据题意,直线的斜率必不为所以设将直线方程代入椭圆的方程中,整理得,设则①②因为所以且将①式平方除以②式得所以又解得又,所以令,则所以【题目点拨】本小题主要考查直线和抛物线的位置关系,考查直线和椭圆的位置关系,考查向量数量积的坐标运算,考查向量模的坐标运算,考查化归与转化的数学思想方法,考查运算求解能力,属于难题.19、(Ⅰ),.(Ⅱ)见解析【解题分析】

(1)由,分和两种情况,即可求得数列的通项公式;(2)由题,得,利用等比数列求和公式,即可得到本题答案.【题目详解】(Ⅰ)解:由题,得当时,,得;当时,,整理,得.数列是以1为首项,2为公比的等比数列,,;(Ⅱ)证明:由(Ⅰ)知,,故.故得证.【题目点拨】本题主要考查根据的关系式求通项公式以及利用等比数列的前n项和公式求和并证明不等式,考查学生的运算求解能力和推理证明能力.20、(1)(2)证明见解析【解题分析】

(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论