版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中原名校2024届高三冲刺模拟(三)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数,则()A. B. C. D.202.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}3.如果实数满足条件,那么的最大值为()A. B. C. D.4.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是()A.小王或小李 B.小王 C.小董 D.小李5.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是()A.方差 B.中位数 C.众数 D.平均数6.已知函数,,的零点分别为,,,则()A. B.C. D.7.中,,为的中点,,,则()A. B. C. D.28.已知复数满足,则=()A. B.C. D.9.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.10.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.11.二项式展开式中,项的系数为()A. B. C. D.12.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.给出下列四个命题,其中正确命题的序号是_____.(写出所有正确命题的序号)因为所以不是函数的周期;对于定义在上的函数若则函数不是偶函数;“”是“”成立的充分必要条件;若实数满足则.14.如图,的外接圆半径为,为边上一点,且,,则的面积为______.15.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°16.已知双曲线的左右焦点为,过作轴的垂线与相交于两点,与轴相交于.若,则双曲线的离心率为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,,求的面积最小值.18.(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.19.(12分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.20.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.21.(12分)某早餐店对一款新口味的酸奶进行了一段时间试销,定价为元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照,,,分组,得到如下频率分布直方图,以不同销量的频率估计概率.从试销售期间任选三天,求其中至少有一天的酸奶销量大于瓶的概率;试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱瓶,批发成本元;小箱每箱瓶,批发成本元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为时看作销量为瓶).①设早餐店批发一大箱时,当天这款酸奶的利润为随机变量,批发一小箱时,当天这款酸奶的利润为随机变量,求和的分布列和数学期望;②以利润作为决策依据,该早餐店应每天批发一大箱还是一小箱?注:销售额=销量×定价;利润=销售额-批发成本.22.(10分)如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
化简得到,再计算模长得到答案.【题目详解】,故.故选:.【题目点拨】本题考查了复数的运算,复数的模,意在考查学生的计算能力.2、C【解题分析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【题目详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【题目点拨】本题主要考查集合的交集运算,属于基础题.3、B【解题分析】
解:当直线过点时,最大,故选B4、D【解题分析】
根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【题目详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【题目点拨】本题考查推理证明的实际应用.5、A【解题分析】
通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.【题目详解】由题可知,中位数和众数、平均数都有变化.本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,根据方差公式可知方差不变.故选:A【题目点拨】本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.6、C【解题分析】
转化函数,,的零点为与,,的交点,数形结合,即得解.【题目详解】函数,,的零点,即为与,,的交点,作出与,,的图象,如图所示,可知故选:C【题目点拨】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.7、D【解题分析】
在中,由正弦定理得;进而得,在中,由余弦定理可得.【题目详解】在中,由正弦定理得,得,又,所以为锐角,所以,,在中,由余弦定理可得,.故选:D【题目点拨】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.8、B【解题分析】
利用复数的代数运算法则化简即可得到结论.【题目详解】由,得,所以,.故选:B.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.9、D【解题分析】
利用的周期性先将复数化简为即可得到答案.【题目详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【题目点拨】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.10、D【解题分析】
利用复数代数形式的乘除运算化简,再由实部为求得值.【题目详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.11、D【解题分析】
写出二项式的通项公式,再分析的系数求解即可.【题目详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【题目点拨】本题主要考查了二项式定理的运算,属于基础题.12、B【解题分析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【题目详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【题目点拨】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
对①,根据周期的定义判定即可.对②,根据偶函数满足的性质判定即可.对③,举出反例判定即可.对④,求解不等式再判定即可.【题目详解】解:因为当时,所以由周期函数的定义知不是函数的周期,故正确;对于定义在上的函数,若,由偶函数的定义知函数不是偶函数,故正确;当时不满足则“”不是“”成立的充分不必要条件,故错误;若实数满足则所以成立,故正确.正确命题的序号是.故答案为:.【题目点拨】本题主要考查了命题真假的判定,属于基础题.14、【解题分析】
先由正弦定理得到,再在三角形ABD、ADC中分别由正弦定理进一步得到B=C,最后利用面积公式计算即可.【题目详解】依题意可得,由正弦定理得,即,由图可知是钝角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面积为.故答案为:.【题目点拨】本题考查正弦定理解三角形,考查学生的基本计算能力,要灵活运用正弦定理公式及三角形面积公式,本题属于中档题.15、4【解题分析】
设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【题目详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O【题目点拨】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.16、【解题分析】
由已知可得,结合双曲线的定义可知,结合,从而可求出离心率.【题目详解】解:,,又,则.,,,即解得,即.故答案为:.【题目点拨】本题考查了双曲线的定义,考查了双曲线的性质.本题的关键是根据几何关系,分析出.关于圆锥曲线的问题,一般如果能结合几何性质,可大大减少计算量.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)16.【解题分析】
(1)将极坐标方程化为直角坐标方程即可;(2)利用极径的几何意义,联立曲线,直线,直线的极坐标方程,得出,利用三角形面积公式,结合正弦函数的性质,得出的面积最小值.【题目详解】(1)曲线:,即化为直角坐标方程为:;(2),即同理∴当且仅当,即()时取等号即的面积最小值为16【题目点拨】本题主要考查了极坐标方程化直角坐标方程以及极坐标的应用,属于中档题.18、(1)(2)直线恒过定点,详见解析【解题分析】
(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标.【题目详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)设直线的方程为:,则∴或,∴,同理,当时,由有.∴,同理,又∴,当时,∴直线的方程为∴直线恒过定点,当时,此时也过定点..综上:直线恒过定点.【题目点拨】本题主要考查利用椭圆的简单性质求椭圆的标准方程,以及直线与椭圆的位置关系应用,定点问题的求法等,意在考查学生的逻辑推理能力和数学运算能力,属于难题.19、(1)证明见解析(2)【解题分析】
(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【题目详解】(1)证明:分别取,的中点,,连接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,,,设面的法向量,所以,取,二面角的平面角为,则为锐角.所以【题目点拨】本题考查由面面平行证明线面平行以及向量法求二面角的余弦值,考查学生的运算能力,在做此类题时,一定要准确写出点的坐标.20、(1)见解析,40元(2)6000元【解题分析】
(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【题目详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【题目点拨】考查离散型随机变量的分布列及其期望的求法,中档题.21、;①详见解析;②应该批发一大箱.【解题分析】
酸奶每天销量大于瓶的概率为,不大于瓶的概率为,设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.利用对立事件概率公式求解即可.①若早餐店批发一大箱,批发成本为元,依题意,销量有,,,四种情况,分别求出相应概率,列出分布列,求出的数学期望,若早餐店批发一小箱,批发成本为元,依题意,销量有,两种情况,分别求出相应概率,由此求出的分布列和数学期望;②根据①中的计算结果,,从而早餐应该批发一大箱.【题目详解】解:根据图中数据,酸奶每天销量大于瓶的概率为,不大于瓶的概率为.设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.所以.①若早餐店批发一大箱,批发成本为元,依题意,销量有,,,四种情况.当销量为瓶时,利润
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学质量月活动总结(21篇)
- 粮食补贴合同
- 离职私了协议书
- 互联网消费金融课件
- 有效沟通技巧课件
- 《药典基本知识》课件
- 伐檀课件教案(加入翻译版)
- 长护险护理服务协议
- 《刺络的发展与应用》课件
- 三年级上册科学教科版课件第1课时 感受空气
- 2024年世界职业院校技能大赛高职组“新型电力系统技术与应用组”参考试题库(含答案)
- 统编版(2024新版)七年级上册历史第二单元 夏商周时期:奴隶制王朝的更替和向封建社会的过渡 单元复习课件
- 大学体育与科学健身智慧树知到期末考试答案章节答案2024年温州医科大学
- 24秋国家开放大学《计算机系统与维护》实验1-13参考答案
- 走进民航智慧树知到期末考试答案章节答案2024年中国民航大学
- 半自理全护理老人护理管理服务投标方案
- 邀请函模板完整
- 国电成都金堂发电有限公司考察报告
- 机电预留预埋施工方案
- (完整版)塔吊安装旁站监理记录表
- 沈雪春:议题式教学的课堂架构和设计论坛ppt课件
评论
0/150
提交评论