江西省赣州市六校2024届下学期高三数学试题第三次月考考试试卷_第1页
江西省赣州市六校2024届下学期高三数学试题第三次月考考试试卷_第2页
江西省赣州市六校2024届下学期高三数学试题第三次月考考试试卷_第3页
江西省赣州市六校2024届下学期高三数学试题第三次月考考试试卷_第4页
江西省赣州市六校2024届下学期高三数学试题第三次月考考试试卷_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市六校2024届下学期高三数学试题第三次月考考试试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.由曲线围成的封闭图形的面积为()A. B. C. D.2.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.3.已知复数满足:,则的共轭复数为()A. B. C. D.4.双曲线的渐近线方程为()A. B. C. D.5.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A. B. C. D.6.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.7.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.8.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为A. B. C. D.9.已知,,,则,,的大小关系为()A. B. C. D.10.已知数列满足,且,则的值是()A. B. C.4 D.11.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A. B.6 C. D.12.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.14.的二项展开式中,含项的系数为__________.15.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.16.已知,则展开式的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1.(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由.18.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.19.(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.20.(12分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.21.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.22.(10分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【题目详解】封闭图形的面积为.选A.【题目点拨】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.2、A【解题分析】

求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【题目详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【题目点拨】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.3、B【解题分析】

转化,为,利用复数的除法化简,即得解【题目详解】复数满足:所以故选:B【题目点拨】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.4、C【解题分析】

根据双曲线的标准方程,即可写出渐近线方程.【题目详解】双曲线,双曲线的渐近线方程为,故选:C【题目点拨】本题主要考查了双曲线的简单几何性质,属于容易题.5、B【解题分析】

根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【题目详解】因为终边上有一点,所以,故选:B【题目点拨】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.6、D【解题分析】双曲线的渐近线方程是,所以,即,,即,,故选D.7、D【解题分析】

试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.8、C【解题分析】

由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C.9、D【解题分析】

构造函数,利用导数求得的单调区间,由此判断出的大小关系.【题目详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【题目点拨】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.10、B【解题分析】由,可得,所以数列是公比为的等比数列,所以,则,则,故选B.点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.11、D【解题分析】

用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【题目详解】执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D.【题目点拨】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.12、D【解题分析】

根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【题目详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【题目点拨】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

建系,设,表示出点坐标,则,根据的范围得出答案.【题目详解】解:以为原点建立平面坐标系如图所示:则,,,,设,则,,,,,,,显然当取得最大值4时,取得最小值1.故答案为:1.【题目点拨】本题考查了平面向量的数量积运算,坐标运算,属于中档题.14、【解题分析】

写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【题目详解】,由,可得.含项的系数为.故答案为:【题目点拨】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.15、1【解题分析】

根据均值的定义计算.【题目详解】由题意,∴.故答案为:1.【题目点拨】本题考查均值的概念,属于基础题.16、【解题分析】

先根据定积分求出的值,再用二项展开式公式即可求解.【题目详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【题目点拨】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(1)不存在,理由见解析【解题分析】

(1)利用离心率和过点,列出等式,即得解(1)设的方程为,与椭圆联立,利用韦达定理表示中点N的坐标,用点坐标表示,利用韦达关系代入,得到关于k的等式,即可得解.【题目详解】(1)由题意,可得解得则,故椭圆的方程为.(1)当直线的斜率不存在时,,不符合题意.当的斜率存在时,设的方程为,联立得,设,则,,,即.设,则,,,则,即,整理得,此方程无解,故的方程不存在.综上所述,不存在直线使得.【题目点拨】本题考查了直线和椭圆综合,考查了弦长和中点问题,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.18、(1)证明见解析;(2)1【解题分析】

(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值.【题目详解】(1)四边形为菱形,,平面,,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,,,,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,,菱形的边长为1.【题目点拨】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平.19、(1);(2)见解析【解题分析】

(1)利用导数研究的单调性,分析函数性质,数形结合,即得解;(2)构造函数,可证得:,,分析直线,与从左到右交点的横坐标,在,处的切线即得解.【题目详解】(1)设函数,,令,令故在单调递减,在单调递增,∴,∵时;;时.(2)①过点,的直线为,则令,,,.②过点,的直线为,则,在上单调递增.③设直线,与从左到右交点的横坐标依次为,,由图知.④在,处的切线分别为,,同理可以证得,.记直线与两切线和从左到右交点的横坐标依次为,.【题目点拨】本题考查了函数与导数综合,考查了学生数形结合,综合分析,转化划归,逻辑推理,数学运算的能力,属于较难题.20、(I);(II).【解题分析】

试题分析:(I)由已知可得;(II)依题意得:的周长为.试题解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依题意得:∴,∴,∴,∴,∴的周长为.考点:1、解三角形;2、三角恒等变换.21、;.【解题分析】

连接,由三角形相似得,,进而得出,,写出椭圆的标准方程;由得,,因为直线与椭圆相切于点,,解得,,因为点在第二象限,所以,,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【题目详解】解:连接,由可得,,,椭圆的标准方程;由得,,因为直线与椭圆相切于点,所以,即,解得,,即点的坐标为,因为点在第二象限,所以,,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【题目点拨】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.22、(1)乙同学正确;(2).【解题分析】

(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论