版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省叶县2024届第二学期期末统一考试(数学试题理)试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为等差数列,若,,则()A.1 B.2 C.3 D.62.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()A.1 B.2 C.3 D.43.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是()A.0 B.1 C.2 D.34.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-25.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A. B.C. D.6.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A. B. C. D.7.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线8.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.9.函数的大致图象是()A. B.C. D.10.若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是()A. B.C. D.11.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.12.如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.14.设,满足约束条件,若的最大值是10,则________.15.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.16.已知数列中,为其前项和,,,则_________,_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.18.(12分)若数列前n项和为,且满足(t为常数,且)(1)求数列的通项公式:(2)设,且数列为等比数列,令,.求证:.19.(12分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.(1)求椭圆的标准方程;(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.20.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.21.(12分)数列满足,,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.22.(10分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出.【题目详解】∵{an}为等差数列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故选:B.【题目点拨】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2、C【解题分析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1.考点:程序框图.3、C【解题分析】
建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【题目详解】设正方体边长为,建立空间直角坐标系如下图所示,,.①,,所以,故①正确.②,,不存在实数使,故不成立,故②错误.③,,,故平面不成立,故③错误.④,,设和成角为,则,由于,所以,故④正确.综上所述,正确的命题有个.故选:C【题目点拨】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.4、C【解题分析】
利用通项公式找到的系数,令其等于-10即可.【题目详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【题目点拨】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.5、B【解题分析】
利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【题目详解】如图,,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,,;在中,,;在中,,,.故选:B【题目点拨】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.6、D【解题分析】
取中点,过作面,可得为等腰直角三角形,由,可得,当时,最小,由,故,即可求解.【题目详解】取中点,过作面,如图:则,故,而对固定的点,当时,最小.此时由面,可知为等腰直角三角形,,故.故选:D【题目点拨】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.7、C【解题分析】
根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【题目详解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示实轴在y轴上的双曲线,
故选C.【题目点拨】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.8、D【解题分析】
根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【题目详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【题目点拨】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.9、A【解题分析】
用排除B,C;用排除;可得正确答案.【题目详解】解:当时,,,所以,故可排除B,C;当时,,故可排除D.故选:A.【题目点拨】本题考查了函数图象,属基础题.10、C【解题分析】
由题可知,设函数,,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.【题目详解】设函数,,因为,所以,或,因为时,,或时,,,其图象如下:当时,至多一个整数根;当时,在内的解集中仅有三个整数,只需,,所以.故选:C.【题目点拨】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.11、A【解题分析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【题目详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【题目点拨】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.12、A【解题分析】
设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【题目详解】设所求切线的方程为,则,联立,消去得①,由,解得,方程①为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【题目点拨】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求出所有可能,找出符合可能的情况,代入概率计算公式.【题目详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,故概率为,故答案为.【题目点拨】本题考查古典概型及其概率计算公式,属于基础题14、【解题分析】
画出不等式组表示的平面区域,数形结合即可容易求得结果.【题目详解】画出不等式组表示的平面区域如下所示:目标函数可转化为与直线平行,数形结合可知当且仅当目标函数过点,取得最大值,故可得,解得.故答案为:.【题目点拨】本题考查由目标函数的最值求参数值,属基础题.15、【解题分析】
作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【题目详解】作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根据余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案为:.【题目点拨】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.16、8(写为也得分)【解题分析】
由,得,.当时,,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),曲线是以为圆心,为半径的圆;(Ⅱ).【解题分析】
(Ⅰ)由曲线的参数方程能求出曲线的普通方程,由此能求出曲线的极坐标方程.(Ⅱ)令,,则,利用诱导公式及二倍角公式化简,再由余弦函数的性质求出面积的取值范围;【题目详解】解:(Ⅰ)由(为参数)化为普通方程为,整理得曲线是以为圆心,为半径的圆.(Ⅱ)令,,,,面积的取值范围为【题目点拨】本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,属于中档题.18、(1)(2)详见解析【解题分析】
(1)利用可得的递推关系,从而可求其通项.(2)由为等比数列可得,从而可得的通项,利用错位相减法可得的前项和,利用不等式的性质可证.【题目详解】(1)由题意,得:(t为常数,且),当时,得,得.由,故,,故.(2)由,由为等比数列可知:,又,故,化简得到,所以或(舍).所以,,则.设的前n项和为.则,相减可得【题目点拨】数列的通项与前项和的关系式,我们常利用这个关系式实现与之间的相互转化.数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.19、(1);(2)详见解析.【解题分析】
(1)由椭圆离心率、系数关系和已知点坐标构建方程组,求得,代入标准方程中即可;(2)依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,,通过联立直线方程与椭圆方程化简整理和中点的坐标表示用含k的表达式表示,,进而表示;由韦达定理表示根与系数的关系进而表示用含k的表达式表示,最后做比即得证.【题目详解】(1)设椭圆的焦距为,则,即,所以.依题意,,即,解得,所以,.所以椭圆的标准方程为.(2)证明:依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,.与椭圆联立整理得,故所以,,所以.又,所以为定值,得证.【题目点拨】本题考查由离心率求椭圆的标准方程,还考查了椭圆中的定值问题,属于较难题.20、(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.【解题分析】
(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1.列出方程组求解,推出,即可得到椭圆的方程.(2)存在实数使得以线段为直径的圆恰好经过坐标原点.设点,,,,将直线的方程代入,化简,利用韦达定理,结合向量的数量积为0,转化为:.求解即可.【题目详解】解:(1)设椭圆的焦半距为c,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年地产开发投资土地使用权转让合同
- 2024年建筑装饰工程合同范本
- 2024年庭院泳池建造与保养合同
- 2024年新式雇佣合同:安全与责任具体规定
- 2024年建筑设计调整补充合同
- 04版物流仓储物流公司与仓库提供商仓储服务合同
- DB4117T 282-2020 青贮玉米集成栽培技术规程
- DB4115T 042-2018 信阳养生菜烹饪技艺 毛尖虾仁
- 2024年新品销售协议中英对照版
- 2024年新形势下二手汽车交易合同范本
- 新苏教版六年级上册科学全册知识点(精编)
- 采购部环境因素和危险源识别
- 应用PDCA提高责任护士病情知晓率
- 提高急性脑梗死的再灌注率PDCA
- 机械伤害事故及其预防课件
- 合理用药健康教育教学课件
- 家庭教育重要性-课件
- HCCDP 云迁移认证理论题库
- 托伐普坦药物治疗进展课件
- 新《煤矿安全规程》第10讲 《煤矿安全规程》关于井下电气事故防治规定
- 做一粒种子中考满分作文(8篇)
评论
0/150
提交评论