![2024届陕西省西安市高新一中、交大附中高三下学期总复习质量调查(一)数学试题_第1页](http://file4.renrendoc.com/view10/M00/1F/29/wKhkGWWPT8iALgbBAAGzQqPmuuM905.jpg)
![2024届陕西省西安市高新一中、交大附中高三下学期总复习质量调查(一)数学试题_第2页](http://file4.renrendoc.com/view10/M00/1F/29/wKhkGWWPT8iALgbBAAGzQqPmuuM9052.jpg)
![2024届陕西省西安市高新一中、交大附中高三下学期总复习质量调查(一)数学试题_第3页](http://file4.renrendoc.com/view10/M00/1F/29/wKhkGWWPT8iALgbBAAGzQqPmuuM9053.jpg)
![2024届陕西省西安市高新一中、交大附中高三下学期总复习质量调查(一)数学试题_第4页](http://file4.renrendoc.com/view10/M00/1F/29/wKhkGWWPT8iALgbBAAGzQqPmuuM9054.jpg)
![2024届陕西省西安市高新一中、交大附中高三下学期总复习质量调查(一)数学试题_第5页](http://file4.renrendoc.com/view10/M00/1F/29/wKhkGWWPT8iALgbBAAGzQqPmuuM9055.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省西安市高新一中、交大附中高三下学期总复习质量调查(一)数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.2.已知满足,则的取值范围为()A. B. C. D.3.已知复数,则()A. B. C. D.24.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.5.已知等式成立,则()A.0 B.5 C.7 D.136.tan570°=()A. B.- C. D.7.函数的图象大致为()A. B.C. D.8.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2 B. C.6 D.89.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.10.已知复数满足:(为虚数单位),则()A. B. C. D.11.根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u=lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是()A.e B.e2 C.ln2 D.2ln212.设复数满足,在复平面内对应的点的坐标为则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,求____________.14.已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为__________.15.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.16.若的展开式中所有项的系数之和为,则______,含项的系数是______(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.18.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.19.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.20.(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.21.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.22.(10分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【题目详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【题目点拨】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.2、C【解题分析】
设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【题目详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.【题目点拨】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.3、C【解题分析】
根据复数模的性质即可求解.【题目详解】,,故选:C【题目点拨】本题主要考查了复数模的性质,属于容易题.4、B【解题分析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【题目详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【题目点拨】本题考查函数周期的求解,涉及对数运算,属综合基础题.5、D【解题分析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【题目详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【题目点拨】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.6、A【解题分析】
直接利用诱导公式化简求解即可.【题目详解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故选:A.【题目点拨】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.7、A【解题分析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.【题目详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.故选:A.【题目点拨】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.8、A【解题分析】
先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【题目详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【题目点拨】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.9、A【解题分析】
根据两个已知条件求出数列的公比和首项,即得的值.【题目详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【题目点拨】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.10、A【解题分析】
利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【题目详解】由,则,所以.故选:A【题目点拨】本题考查了复数的四则运算、共轭复数的概念,属于基础题.11、B【解题分析】
将u=lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【题目详解】解:将u=lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【题目点拨】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.12、B【解题分析】
根据共轭复数定义及复数模的求法,代入化简即可求解.【题目详解】在复平面内对应的点的坐标为,则,,∵,代入可得,解得.故选:B.【题目点拨】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求出向量的坐标,然后利用向量数量积的坐标运算可计算出结果.【题目详解】,,,因此,.故答案为:.【题目点拨】本题考查平面向量数量积的坐标运算,考查计算能力,属于基础题.14、【解题分析】
根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线与圆相离,从而可得,解不等式,再利用离心率即可求解.【题目详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,因此当直线与圆相离时,恒为锐角,故,解得从而离心率.故答案为:【题目点拨】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.15、【解题分析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【题目详解】因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:【题目点拨】本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.16、【解题分析】的展开式中所有项的系数之和为,,,项的系数是,故答案为(1),(2).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】
(1)取中点,连接,根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;(2)根据面面垂直的判定定理和性质定理,可以确定点到直线的距离即为点到平面的距离,结合垂线段的性质可以确定点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.利用空间向量夹角公式,结合同角的三角函数关系式进行求解即可.【题目详解】(1)证明:取中点,连接,因为四边形为菱形且.所以,因为,所以,又,所以平面,因为平面,所以.同理可证,因为,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以点到直线的距离即为点到平面的距离.过作的垂线段,在所有的垂线段中长度最大的为,此时必过的中点,因为为中点,所以此时,点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.则所以平面的一个法向量为,设平面的法向量为,则即取,则,,所以,所以面与面所成二面角的正弦值为.【题目点拨】本题考查了线面垂直的判定定理和性质的应用,考查了二面角的向量求法,考查了推理论证能力和数学运算能力.18、(1),;(2).【解题分析】
(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,,则,求得取最小值时符合的条件,进而求得直线的普通方程.【题目详解】(1)设点极坐标分别为,,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.【题目点拨】本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系.19、(1)见解析(2)直线过定点.【解题分析】
(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【题目详解】(1)设切点,,,∴切线的斜率为,切线:,设,则有,化简得,同理可的.∴,是方程的两根,∴,,,∴轴.(2)∵,∴.∵,∴直线:,即,∴直线过定点.【题目点拨】本小题主要考查直线和抛物线的位置关系,考查直线过定点问题,考查化归与转化的数学思想方法,属于中档题.20、(1)证明见详解;(2)证明见详解【解题分析】
(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,,则对于任意都成立,则成等比数列,设公比为,验证得答案.【题目详解】(1)证明:由是等比数列,由等比数列的性质可得:等比数列是“数列”.(2)证明:既是“数列”又是“数列”,可得,()(),()可得:对于任意都成立,即成等比数列,即成等比数列,成等比数列,成等比数列,设,()数列是“数列”时,由()可得:时,由()可得:,可得,同理可证成等比数列,数列是等比数列【题目点拨】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能力,属于难题.21、(1);(2).【解题分析】
(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【题目详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有,解得;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,①当在上是单调增函数,则,解得,检验符合;②当在上是单调减函数,则,解得,在上不是单调函数,不符合题意。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年个人律师见证委托合同范文(2篇)
- 2025年买狗签合同格式版(2篇)
- 2025年二级域名合作协议简单版(4篇)
- 房屋美化施工合同范例
- 图书期刊定期配送合同
- 游艇会简易装修合同样本
- 服装品牌转让居间协议范本
- 家具店装修主材代购合同
- 仓储物流装修工人合同模板
- 茂名小区标线施工方案
- 植物的类群及演化
- 老年社会工作课件
- 最新记24小时出入量、护理文书书写规范课件
- 普通生物学考试大纲
- DB23T 2714-2020 农村生活垃圾非焚烧低温处理设施大气污染物排放标准
- 【人教版】免疫系统的组成和功能课件1
- 农信社运营主管述职报告【三篇】
- 48个国际音标表(打印版)已整理
- 建标 198-2022 城市污水处理工程项目建设标准
- 高等数学中符号的读法及功能(挺全的)
- 基层法律服务所设立登记表
评论
0/150
提交评论