湖北省武汉市高新区2023年八年级数学第一学期期末监测试题含解析_第1页
湖北省武汉市高新区2023年八年级数学第一学期期末监测试题含解析_第2页
湖北省武汉市高新区2023年八年级数学第一学期期末监测试题含解析_第3页
湖北省武汉市高新区2023年八年级数学第一学期期末监测试题含解析_第4页
湖北省武汉市高新区2023年八年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市高新区2023年八年级数学第一学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知点,都在直线上,则,的值的大小关系是()A. B. C. D.不能确定2.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B. C. D.3.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD⊥AC;④AC=AD.其中正确的结论有()A.①② B.①②④ C.①②③ D.①③④4.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短 C.过点O作直线a∥b D.锐角都相等吗5.某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A. B.C. D.6.下列各多项式从左到右变形是因式分解,并分解正确的是()A.B.C.D.7.若不等式组的解为,则下列各式中正确的是()A. B. C. D.8.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=()A.25cm B.45cm C.50cm D.55cm9.已知=,=,则的值为()A.3 B.4 C.6 D.910.若,,则的值为()A.1 B. C.6 D.二、填空题(每小题3分,共24分)11.使有意义的x的取值范围为______.12.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.13.已知,m+2的算术平方根是2,2m+n的立方根是3,则m+n=_____.14.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P到BC的距离是_______.15.计算:0.09的平方根是________.16.等腰三角形的一个角是50°,则它的底角为__________°.17.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.18.如图,在中,,,平分交于,于,下列结论:①;②点在线段的垂直平分线上;③;④;⑤,其中正确的有____(填结论正确的序号).三、解答题(共66分)19.(10分)如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD的平分线交AB于E点;(2)判断△ACE的形状,并证明.20.(6分)观察下列等式第1个等式第2个等式第3个等式第4个等式……(1)按以上规律列出第5个等式;(2)用含的代数式表示第个等式(为正整数).(3)求的值.21.(6分)如图,三个顶点的坐标分别为,,.(1)画出关于轴对称的图形,并写出三个顶点的坐标;(2)在轴上作出一点,使的值最小,求出该最小值.(保留作图痕迹)22.(8分)已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为1.当△ABC是等腰三角形时,求k的值23.(8分)因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?24.(8分)父亲两次将100斤粮食分给兄弟俩,第一次分给哥哥的粮食等于第二次分给弟弟的2倍,第二次分给哥哥的粮食是第一次分给弟弟的3倍,求两次分粮食中,哥哥、弟弟各分到多少粮食?25.(10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:每人加工零件数540450300240210120人数112632(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?26.(10分)学校为了丰富同学们的社团活动,开设了足球班.开学初在某商场购进A,B两种品牌的足球,购买A品牌足球花费了2400元,购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花20元.(1)求所购买的A、B两种品牌足球的单价是多少元?(2)为响应“足球进校园”的号召,决定再次购进A,B两种品牌足球共30个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了10%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A,B两种品牌足球的总费用不超过2000元,那么此次最多可购买多少个B品牌足球?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据两点的横坐标-3<1,及k的值即可得到答案.【详解】∵k=<0,∴y随x的增大而减小,∵-3<1,∴,故选:A.【点睛】此题考查一次函数的增减性,熟记函数的性质定理即可正确解题.2、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.3、B【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质进而解答即可.【详解】解:∵AD平分∠EAC,

∴∠EAC=2∠EAD,

∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,

∴∠EAD=∠ABC,

∴AD∥BC,∴①正确;

∵AD∥BC,

∴∠ADB=∠DBC,

∵BD平分∠ABC,∠ABC=∠ACB,

∴∠ABC=∠ACB=2∠DBC,

∴∠ACB=2∠ADB,∴②正确;

∵BD平分∠ABC,∠ABC=∠ACB,

∵∠ABC+∠ACB+∠BAC=180°,

当∠BAC=∠C时,才有∠ABD+∠BAC=90°,故③错误;

∵∠ADB=∠ABD,

∴AD=AB,

∴AD=AC,故④正确;

故选:B.【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.4、B【分析】根据命题的定义对各个选项进行分析从而得到答案.【详解】A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点睛】此题主要考查学生对命题与定理的理解及掌握情况.5、D【分析】根据轴对称图形的概念求解即可.【详解】A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、A【分析】直接利用因式分解的定义进而分析得出答案.【详解】解:A、,是因式分解,故此选项正确;

B、(x+2)(x+3)=x2+5x+6,是整式的乘法运算,故此选项错误;

C、4a2-9b2=(2a-3b)(2a+3b),故此选项错误;

D、m2-n2+2=(m+n)(m-n)+2,不符合因式分解的定义,故此选项错误.

故选:A.【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.7、B【分析】根据不等式组的解集得到-a≤b,变形即可求解.【详解】∵不等式组的解为,∴-a≤b即故选B.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式组的解集确定方法.8、C【分析】由垂直平分线的性质可求得AD=BD,则△ACD的周长可化为AC+CD+BD,即AC+BC,可求得答案.【详解】解:∵DE为AB的垂直平分线,∴AD=BD,∴AC+CD+AD=AC+CD+BD=AC+BC=50,故选:C.【点睛】本题考查线段垂直平分线的知识,解题的关键是掌握线段垂直平分线的性质:线段垂直平分线上的点到这条线段两端点的距离相等.9、D【分析】逆用同底数幂的除法法则以及幂的乘方法则进行计算,即可解答.【详解】∵=,=,

∴=(3a)2÷3b=36÷4=9,

故选D.【点睛】本题考查同底数幂的除法法则以及幂的乘方法则,解题的关键是掌握相关法则的逆用.10、C【分析】原式首先提公因式,分解后,再代入求值即可.【详解】∵,,∴.故选:C.【点睛】本题主要考查了提公因式分解因式,关键是正确确定公因式.二、填空题(每小题3分,共24分)11、x≤1.【解析】解:依题意得:1﹣x≥2.解得x≤1.故答案为:x≤1.12、1【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=1,故答案为1.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.13、1【分析】根据算术平方根、立方根的意义求出m和n的值,然后代入m+n即可求解.【详解】解:∵m+2的算术平方根是2,∴m+2=4,∴m=2,∵2m+n的立方根是3,∴4+n=27,∴n=23,∴m+n=1,故答案为1.【点睛】本题考查立方根、平方根;熟练掌握立方根、平方根的性质是解题的关键.14、3【解析】分析:过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等,可得PA=PE,PD=PE,那么PE=PA=PD,又AD=6,进而求出PE=3.详解:如图,过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.15、【分析】根据平方根的定义即可求解.【详解】0.09的平方根是故答案为:.【点睛】此题主要考查平方根,解题的关键是熟知其定义.16、50或1.【解析】已知一个内角是50°,则这个角可能是底角也可能是顶角,因此要分两种情况进行求解.【详解】当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是1°.故答案是:50或1.【点睛】本题考查了等腰三角形的性质,解题时要全面思考,不要漏解.17、1°【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴,,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴,∴∠BOC=180°-(∠OBC+∠OCB)=1°;故答案为:1.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.18、①②③⑤【分析】根据已知条件可得,,,是含角的,而是一个等腰三角形,进而利用等腰三进行的判定、垂直平分线的判定以及含角的直角三角形的性质可以得出、点在线段的垂直平分线上、、、,即可判断.【详解】∵,∴,∵平分交于∴∴∴,故①正确;点在线段的垂直平分线上,故②正确;∵∴,故③正确;∴在中,,故④错误;在中,在中,∴,故⑤正确.故答案是:①②③⑤.【点睛】本题图形较为复杂,涉及到知识点较多,主要考查了等腰三进行的判定、垂直平分线的判定以及含角的直角三角形的性质,属中等题,解题时要保持思路清晰.三、解答题(共66分)19、(1)如图见解析;(2)△ACE是等腰三角形,证明见解析.【分析】(1)根据角平分线的作法,用尺规作图;(2)根据平行线性质和角平分线定义,可得∠ACE=∠AEC.【详解】(1)解:如图即为所求.(2)△ACE是等腰三角形.证明:,∥∴∠ECD=∠AEC,∴∠ACE=∠AEC,△ACE是等腰三角形.【点睛】本题考核知识点:角平分线,平行线.解题关键点:理解角平分线定义和平行线性质.20、(1);(2);(3)【分析】(1)、(2)根据题干中的规律,继续往下写即可;(3)先提取公因式,然后发现用裂项相消发可以抵消掉中间项,从而算得结果.【详解】(1)根据题干规律,则第5项为:(2)发现一般规律,第n项是的形式,写成算式的形式为:(3)=+++=[+++]==【点睛】本题考查找规律,需要注意,当我们找到一般规律后,建议多代入几项进行验证,防止出错.21、(1)见解析,;(2)见解析,.【分析】(1)先根据轴对称的定义画出点,再顺次连接即可得,根据点坐标关于x轴对称的变化规律即可得点的坐标;(2)根据轴对称的性质、两点之间线段最短可得连接与x轴的交点P即为所求,最小值即为的长,由两点之间的距离公式即可得.【详解】(1)先根据轴对称的定义画出点,再顺次连接即可得,如图所示:点坐标关于x轴对称的变化规律:横坐标不变、纵坐标变为相反数则;(2)由轴对称的性质得:则由两点之间线段最短得:连接与x轴的交点P即为所求,最小值即为的长由两点之间的距离公式得:.【点睛】本题考查了画轴对称图形与轴对称的性质、两点之间线段最短等知识点,熟记轴对称图形与性质是解题关键.22、(5)详见解析(4)或【分析】(5)先计算出△=5,然后根据判别式的意义即可得到结论;(4)先利用公式法求出方程的解为x5=k,x4=k+5,然后分类讨论:AB=k,AC=k+5,当AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.【详解】解:(5)证明:∵△=(4k+5)4-4(k4+k)=5>0,∴方程有两个不相等的实数根;(4)解:一元二次方程x4-(4k+5)x+k4+k=0的解为x=,即x5=k,x4=k+5,∵k<k+5,∴AB≠AC.当AB=k,AC=k+5,且AB=BC时,△ABC是等腰三角形,则k=5;当AB=k,AC=k+5,且AC=BC时,△ABC是等腰三角形,则k+5=5,解得k=4,所以k的值为5或4.【点睛】5.根的判别式;4.解一元二次方程-因式分解法;5.三角形三边关系;4.等腰三角形的性质.23、限行期间这路公交车每天运行50车次.【分析】设限行期间这路公交车每天运行x车次,则原来运行车次,根据“平均每车次运送乘客与原来的数量基本相同”列出分式方程,求解即可.【详解】解:设限行期间这路公交车每天运行x车次,则原来运行车次,根据题意可得:,解得:,经检验得是该分式方程的解,答:限行期间这路公交车每天运行50车次.【点睛】本题考查分式方程的实际应用,根据题意列出分式方程并求解是解题的关键,需要注意的是求出分式方程的解之后一定要验根.24、第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤【分析】设哥哥第一次分到粮食为x斤,弟弟第二次分到的粮食为y斤,根据题中给出已知条件,找到等量关系列出二元一次方程组,解方程组即可求解.【详解】设哥哥第一次分到粮食为x斤,弟弟第二次分到的粮食为y斤,依题意得:解得第一次弟弟分到:(斤)第二次哥哥分到:(斤)∴第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤故答案为:第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤.【点睛】本题考查了二元一次方程组的实际应用,找到题中等量关系列出方程组是解题的关键.25、(1)平均数是:260件,中位数是:240件,众数是:240件;(2)240件.【分析】(1)利用加权平均数公式即可求得平均数,中位数是小到大的顺序排列时,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;(2)根据(1)求得的中位数,平均数以及众数进行比较,根据实际情况进行判断.【详解】解:(1)这15人该月加工零件总数==3900(件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论