




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市商水县2023-2024学年八年级数学第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A. B.C. D.2.如图,点P是△ABC内一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,且PD=PE=PF,则点P是△ABC()A.三边垂直平分线的交点 B.三条角平分线的交点C.三条高的交点 D.三条中线交点3.下列各数中为无理数的是()A. B. C. D.4.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于A.60° B.70° C.80° D.90°5.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC上的动点,则△BEQ周长的最小值为()A.5 B.6 C.42 D.6.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣17.关于x的方程解为正数,则m的范围为()A. B. C. D.8.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用、()表示小长方形的长和宽,则下列关系式中错误的是()A. B.C. D.9.已知,则的值为()A. B. C. D.10.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60° B.65° C.70° D.75°二、填空题(每小题3分,共24分)11.计算的结果为________.12.正十边形的内角和等于_______,每个外角等于__________.13.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,若(a﹣1)2+|b﹣|+=0,则这个三角形一定是_____.14.因式分解:___.15.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为_____.16.如图,在四边形中,,,,,且,则四边形的面积是______.17.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=BC1.其中正确结论是_____(填序号).18.点A(﹣3,2)关于y轴的对称点坐标是_____.三、解答题(共66分)19.(10分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.20.(6分)八(1)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图5-1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图5-2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读后1回答下列问题:
(1)方案(Ⅰ)是否可行?说明理由.(2)方案(Ⅱ)是否可行?说明理由.(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?.21.(6分)“金源”食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费用(元)与包装盒个数(个)满足图中的射线所示的函数关系;方案二:租赁机器自己加工,所需费用(元)(包括租赁机器的费用和生产包装盒的费用)与包装盒个数(个)满足图中射线所示的函数关系.根据图象解答下列问题:(1)点的坐标是_____________,方案一中每个包装盒的价格是___________元,射线所表示的函数关系式是_____________.(2)求出方案二中的与的函数关系式;(3)你认为选择哪种方案更省钱?请说明理由.22.(8分)先化简,再求值:已知,求的值.23.(8分)如图,一次函数y1=1x﹣1的图象与y轴交于点A,一次函数y1的图象与y轴交于点B(0,6),点C为两函数图象交点,且点C的横坐标为1.(1)求一次函数y1的函数解析式;(1)求△ABC的面积;(3)问:在坐标轴上,是否存在一点P,使得S△ACP=1S△ABC,请直接写出点P的坐标.24.(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,以为边作正方形,请解决下列问题:(1)求点和点的坐标;(2)求直线的解析式;(3)在直线上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.25.(10分)解方程26.(10分)甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:甲:8,6,7,8,9,10,6,5,4,7乙:7,9,8,5,6,7,7,6,7,8(1)分别计算以上两组数据的平均数;(2)分别计算以上两组数据的方差.
参考答案一、选择题(每小题3分,共30分)1、D【详解】长方形ABCD的面积的两种表示方法可得,故选D.2、B【分析】根据角平分线性质的逆定理即可得出答案.【详解】解:P到三条距离相等,即PD=PE=PF,连接PA、PB、PC,∵PD=PE,∴PB是∠ABC的角平分线,同理PA、PC分别是∠BAC,∠ACB的角平分线,故P是△ABC角平分线交点,故选:B.【点睛】本题主要考查三角形角平分线的交点,掌握角平分线的性质的逆定理是解题的关键.3、C【分析】无理数就是无限循环小数,依据定义即可作出判断.【详解】A.是有理数,不符合题意;B.是有理数,不符合题意;C.是无限不循环小数,是无理数,正确;D.=2是整数,不符合题意;故选:C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.4、C【详解】根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.5、B【解析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.【详解】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=AD∴△BEQ周长的最小值=DE+BE=5+1=1.故选:B.【点睛】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.6、D【详解】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选D.【点睛】本题考查1、负指数幂;2、零指数幂;3、绝对值;4、乘方,计算难度不大.7、B【分析】首先解分式方程,然后令其大于0即可,注意还有.【详解】方程两边同乘以,得∴解得且故选:B.【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.8、A【分析】由正方形的面积公式可求x+y=12,x﹣y=2,可求x=7,y=5,即可求解.【详解】由题意可得:(x+y)2=144,(x﹣y)2=4,∴x+y=12,x﹣y=2,故B、C选项不符合题意;∴x=7,y=5,∴xy=35,故D选项不符合题意;∴x2+y2=84≠100,故选项A符合题意.故选A.【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.9、A【分析】根据分式的加减运算法则即可求解.【详解】∵==∴=4故m+n=0,4m=4解得故选A.【点睛】此题主要考查分式运算的应用,解题的关键是熟知分式的加减运算法则.10、C【分析】由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.【详解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.二、填空题(每小题3分,共24分)11、【分析】先把分式进行整理,然后进行计算,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则进行解题.12、1440°36°【分析】根据多边形的内角和公式以及外角和即可得出结果.【详解】解:正十边形的内角和=(10-2)×180°=1440°,
∵正十边形的每个外角都相等,∴每个外角的度数=.
故答案为:;.【点睛】本题考查多边形的内角和计算公式以及多边形的外角和.多边形内角和定理:多边形内角和等于(n-2)•180°;多边形的外角和为360°.13、直角三角形【分析】依据偶数次幂,绝对值,二次根式的非负性求得a、b、c的值,然后依据勾股定理的逆定理进行判断即可.【详解】∵(a﹣1)2+|b﹣|+=0,∴a=1,b=,c=2,∴a2+c2=b2,∴△ABC为直角三角形.故答案为:直角三角形.【点睛】本题主要考查偶数次幂,绝对值,二次根式的非负性以及勾股定理的逆定理,掌握偶数次幂,绝对值,二次根式的非负性是解题的关键.14、2a(a-2)【详解】15、70°或40°或20°【分析】分三种情况:①当AC=AD时,②当CD′=AD′时,③当AC=AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B=50°,∠C=90°,∴∠BAC=90°-50°=40°,如图,有三种情况:
①当AC=AD时,∠ACD==70°;
②当CD′=AD′时,∠ACD′=∠BAC=40°;
③当AC=AD″时,∠ACD″=∠BAC=20°,
故答案为70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16、1【分析】连接BD,如图,在△ABD中,根据勾股定理可得BD的长,然后根据勾股定理的逆定理可判断△BDC是直角三角形,然后根据S四边形=计算即可.【详解】解:连接BD,如图,在△ABD中,∵,,,∴,∵,∴∠BDC=90°,∴S四边形=.故答案为:1.【点睛】本题考查了勾股定理及其逆定理以及三角形的面积等知识,属于基本题型,熟练掌握勾股定理及其逆定理是解答的关键.17、①②【解析】分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.详解:∵∠B=45°,AB=AC∴点D为BC的中点,∴AD=CD=BD故①正确;由AD⊥BC,∠BAD=45°可得∠EAD=∠C∵∠MDN是直角∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°∴∠ADE=∠CDF∴△ADE≌△CDF(ASA)故②正确;∴DE=DF,AE=CF,∴AF=BE∴BE+AE=AF+AE∴AE+AF>EF故③不正确;由△ADE≌△CDF可得S△ADF=S△BDE∴S四边形AEDF=S△ACD=×AD×CD=×BC×BC=BC1,故④不正确.故答案为①②.点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.18、(3,2)【解析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】点A(﹣3,2)关于y轴的对称点坐标是(3,2).故答案为:(3,2).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题(共66分)19、证明过程见解析【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【详解】∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考点:全等三角形的判定与性质.20、(1)见解析;(2)见解析;(3)∠ABD=∠BDE=90°,成立.【解析】(1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;
(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,仍可以证明△ABC≌△EDC,则也可得到AB=ED.【详解】(1)在△ACB和△DCE中∵AC=DC∠ACB=∠DCEBC=EC∴△ACB≌△DCE(SAS)∴AB=DE,故方案(Ⅰ)可行;(2)∵CB⊥AB、CD⊥DE∴∠ABC=∠EDC=90°在△ABC和△EDC中∵∠ABC=∠EDCBC=DC∠ACB=∠ECD∴△ABC≌△EDC(ASA)∴ED=AB,故方案(Ⅱ)可行;(3)作BF⊥AB,ED⊥BF的目的是作∠ABC=∠EDC=90°;
如果∠ABD=∠BDE≠90°,仍可以利用ASA证明△ABC≌△EDC,则也可得到AB=ED.故答案为:(1)见解析;(2)见解析;(3)∠ABD=∠BDE=90°,成立.【点睛】本题考查全等三角形的应用,关键是掌握全等三角形的判定与性质,证明三角形的全等是证明线段相等的一种重要方法.21、(1),,;(2);(3)当需要包装盒小于个时,选择方案一省钱:当需要包装盒大于个时,选择方案二省钱,见解析【分析】(1)根据图像即可得出A的坐标,用价格=费用包装盒个数,假设出射线所表示的函数关系式是:,将A代入即可;(2)设的函数关系式是,把点,代入,求解即可得与的函数关系式;(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.【详解】解:(1)由图像可知:A,∴方案一中每个包装盒的价格是:(元),设射线所表示的函数关系式是:把A代入得:解得:∴;故答案为:,,.(2)设的函数关系式是.图象过点,解得.方案二中的函数表达式是.(3)当时,.(元)当需要包装盒个时,方案一和方案二所需钱数都是元;根据图象可知:当需要包装盒小于个时,选择方案一省钱:当需要包装盒大于个时,选择方案二省钱.【点睛】本题考查了一次函数的应用,解题的关键是从实际问题中整理出函数模型,并利用函数的知识解决实际问题.22、,【分析】原式括号中的两项分母分解因式后利用异分母分式加减法法则,先通分再运算,然后利用分式除法运算法则运算,约分化简,最后把的值代入求值即可.【详解】原式=====,当时,原式===【点睛】本题考查了分式的混合运算,重点是通分和约分的应用,掌握因式分解的方法,分式加减和乘除法法则为解题关键.23、(1)y1=﹣1x+2;(1)12;(3)在坐标轴上,存在一点P,使得S△ACP=1S△ABC,P点的坐标为(0,14)或(0,﹣18)或(﹣7,0)或(9,0).【分析】(1)求出C的坐标,然后利用待定系数法即可解决问题;(1)求得A点的坐标,然后根据三角形面积公式求得即可;(3)分两种情况,利用三角形面积公式即可求得.【详解】解:(1)当x=1时,y1=1x﹣1=1,∴C(1,1),设y1=kx+b,把B(0,2),C(1,1)代入可得,解得,∴一次函数y1的函数解析式为y1=﹣1x+2.(1)∵一次函数y1=1x﹣1的图象与y轴交于点A,∴A(0,﹣1),∴S△ABC=(2+1)×1=8;∵S△ACP=1S△ABC,∴S△ACP=12(3)当P在y轴上时,∴AP•xC=12,即AP•1=12,∴AP=12,∴P(0,14)或(0,﹣18);当P在x轴上时,设直线y1=1x﹣1的图象与x轴交于点D,当y=0时,1x-1=0,解得x=1,∴D(1,0),∴S△ACP=S△ADP+S△ACD=PD•|yC|+PD•OA=12,∴PD(1+1)=12,∴PD=8,∴P(﹣7,0)或(9,0),综上,在坐标轴上,存在一点P,使得S△ACP=1S△ABC,P点的坐标为(0,14)或(0,﹣18)或P(﹣7,0)或(9,0).【点睛】本题考查了待定系数法求一次函数的解析式,坐标与图形的性质,三角形面积,以及分类讨论的数学思想,熟练掌握待定系数法和分类讨论是解题的关键.24、(1)点,点;(2);(3)点,点.【分析】(1)根据待定系数法,可得直线的解析式是:,进而求出,过点作轴于点,易证,从而求出点D的坐标;(2)过点作轴于点,证得:,进而得,根据待定系数法,即可得到答案;(3)分两种情况:点与点重合时,点与点关于点中心对称时,分别求出点P的坐标,即可.【详解】(1)经过点,,直线的解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养宠物租房合同范例
- 包装物购销合同范例
- 中介合同范本样本
- 农副产品马蹄收购合同范本
- 别墅土建付款合同范本
- 凉山校园保洁合同范本
- 人资服务合同范本
- 全款车抵押合同范本
- 公里桩合同范本
- 劳务派遣未签合同范例
- 沪科版八年级物理上册 专题01 运动的世界【考题猜想】(92题18大类型)
- 消防设施救援培训考试题及答案
- 肾包膜下血肿护理
- 租船问题(教学设计)-2023-2024学年四年级下册数学人教版
- 2024年A特种设备相关管理考试题库及答案
- 数字化智能化园区建设水平评价标准(征求意见稿)
- 外研版(三起点)小学英语三年级下册全册同步练习(含答案)
- 幼儿园 《十个人快乐大搬家》绘本
- 手机短视频拍摄与剪辑(微课版) 课件 第7章 视频摄像
- 农村建房清包工合同协议书
- 镍矿石购销合同
评论
0/150
提交评论