




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省增城中学2024届高三1月期末通练数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数()的图象的大致形状是()A. B. C. D.2.已知数列满足,(),则数列的通项公式()A. B. C. D.3.已知,则p是q的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.5.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣126.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则()A.10 B.11 C.12 D.137.如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为()A. B. C. D.8.已知函数,则()A. B.1 C.-1 D.09.函数的图象与函数的图象的交点横坐标的和为()A. B. C. D.10.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则()A.2或 B.3或 C.4或 D.5或11.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.3612.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集为________14.如图,在中,已知,为边的中点.若,垂足为,则的值为__.15.已知函数,则曲线在处的切线斜率为________.16.在区间内任意取一个数,则恰好为非负数的概率是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.18.(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.19.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为4sin.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.20.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.21.(12分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.22.(10分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
对x分类讨论,去掉绝对值,即可作出图象.【题目详解】故选C.【题目点拨】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.2、A【解题分析】
利用数列的递推关系式,通过累加法求解即可.【题目详解】数列满足:,,可得以上各式相加可得:,故选:.【题目点拨】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.3、B【解题分析】
根据诱导公式化简再分析即可.【题目详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【题目点拨】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.4、D【解题分析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.5、D【解题分析】
分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果.【题目详解】设,联立则,因为直线经过C的焦点,所以.同理可得,所以故选:D.【题目点拨】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。6、D【解题分析】
利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【题目详解】由,,构成等差数列可得即又解得:又所以时,.故选:D【题目点拨】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.7、A【解题分析】
分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。8、A【解题分析】
由函数,求得,进而求得的值,得到答案.【题目详解】由题意函数,则,所以,故选A.【题目点拨】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解题分析】
根据两个函数相等,求出所有交点的横坐标,然后求和即可.【题目详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【题目点拨】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.10、C【解题分析】
先根据弦长求出直线的斜率,再利用抛物线定义可求出.【题目详解】设直线的倾斜角为,则,所以,,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【题目点拨】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.11、B【解题分析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.12、B【解题分析】
或,从而明确充分性与必要性.【题目详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【题目点拨】本题考查充分性与必要性,简单三角方程的解法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
通过平方,将无理不等式化为有理不等式求解即可。【题目详解】由得,解得,所以解集是。【题目点拨】本题主要考查无理不等式的解法。14、【解题分析】
,由余弦定理,得,得,,,所以,所以.点睛:本题考查平面向量的综合应用.本题中存在垂直关系,所以在线性表示的过程中充分利用垂直关系,得到,所以本题转化为求长度,利用余弦定理和面积公式求解即可.15、【解题分析】
求导后代入可构造方程求得,即为所求斜率.【题目详解】,,解得:,即在处的切线斜率为.故答案为:.【题目点拨】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.16、【解题分析】
先分析非负数对应的区间长度,然后根据几何概型中的长度模型,即可求解出“恰好为非负数”的概率.【题目详解】当是非负数时,,区间长度是,又因为对应的区间长度是,所以“恰好为非负数”的概率是.故答案为:.【题目点拨】本题考查几何概型中的长度模型,难度较易.解答问题的关键是能判断出目标事件对应的区间长度.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.18、(1),;(2)【解题分析】
(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【题目详解】(1)由得:,,即,解得,.(2)的图像与直线及围成的四边形,,,,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【题目点拨】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.19、(1)(2)(2,).【解题分析】
(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【题目详解】(1)∵曲线C的极坐标方程为,∴,则,即.(2),∴,联立可得,(舍)或,公共点(,3),化为极坐标(2,).【题目点拨】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极坐标和直角坐标的转化公式是求解的关键,交点问题一般是统一一种坐标形式求解后再进行转化,侧重考查数学运算的核心素养.20、(1);(2);(3)利润约为111.2万元.【解题分析】
(1)首先列出基本事件,然后根据古典概型求出恰好两个月合格的概率;(2)首先求出利润y和养殖量x的平均值,然后根据公式求出线性回归方程中的斜率和截距即可求出线性回归方程;(3)根据线性回归方程代入9月份的数据即可求出9月利润.【题目详解】(1)2月到6月中,合格的月份为2,3,4月份,则5个月份任意选取3个月份的基本事件有,,,,,,,,,,共计10个,故恰好有两个月考核合格的概率为;(2),,,,故;(3)当千只,(十万元)(万元),故9月份的利润约为111.2万元.【题目点拨】本题主要考查了古典概型,线性回归方程的求解和使用,属于基础题.21、(1)a=-1,b=1;(2)-1.【解题分析】(1)对求导得,根据函数的图象在处的切线为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,,,,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.(1),.由题意知.(2)由(1)知:,∴对任意恒成立对任意恒成立对任意恒成立.令,则.由于,所以在上单调递增.又,,,,所以存在唯一的,使得,且当时,,时,.即在单调递减,在上单调递增.所以.又,即,∴.∴.∵,∴.又因为对任意恒成立,又,∴.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 温州乐成寄宿中学2024-2025学年高三第二学期4月模拟考试生物试题含解析
- 郴州市汝城县2025届六年级下学期小升初真题数学试卷含解析
- 怎做消防安全
- 护理瞳孔观察的方法和内容
- 幼儿爱眼护眼课件
- 学校教务处工作总结
- 半事化宿舍管理
- 引流管的更换护理要点
- 数学培训成果展示
- 电工电子技术 课件 51.集成运放线性应用电路-比例运算电路-60.组合逻辑电路的分析
- 设立文化传播服务公司组建方案
- 腰椎退行性病变的护理查房
- 合同Amazon店铺代运营协议
- 管线补焊施工方案
- 外墙保温维修施工方案
- 2023汽车用铝电线束技术条件
- 机械设备租赁技术服务方案
- AB 753变频器简单操作培训(参数拷贝)
- 列控车载设备
- 六氟化硫断路器试验报告
- 《资本论》第二卷课件
评论
0/150
提交评论