版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南安一中2024届普通高中高三第二次模拟考试数学试题理请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.2.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是()A. B. C. D.3.若、满足约束条件,则的最大值为()A. B. C. D.4.已知(),i为虚数单位,则()A. B.3 C.1 D.55.()A. B. C.1 D.6.在中,为边上的中线,为的中点,且,,则()A. B. C. D.7.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为()A. B.C. D.8.已知,则下列不等式正确的是()A. B.C. D.9.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.10.定义在上的偶函数,对,,且,有成立,已知,,,则,,的大小关系为()A. B. C. D.11.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则()A. B. C. D.12.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为()A.100 B.1000 C.90 D.90二、填空题:本题共4小题,每小题5分,共20分。13.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.14.设等差数列的前项和为,若,,则数列的公差________,通项公式________.15.在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_______.16.在数列中,,则数列的通项公式_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.18.(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.19.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.20.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?21.(12分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次数为.(1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.22.(10分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【题目详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【题目点拨】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.2、B【解题分析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.3、C【解题分析】
作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【题目详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示.由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【题目点拨】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.4、C【解题分析】
利用复数代数形式的乘法运算化简得答案.【题目详解】由,得,解得.故选:C.【题目点拨】本题考查复数代数形式的乘法运算,是基础题.5、A【解题分析】
利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果.【题目详解】,,因此,.故选:A.【题目点拨】本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题.6、A【解题分析】
根据向量的线性运算可得,利用及,计算即可.【题目详解】因为,所以,所以,故选:A【题目点拨】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.7、C【解题分析】
根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【题目详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【题目点拨】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.8、D【解题分析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【题目详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.【题目点拨】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.9、A【解题分析】
首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【题目详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【题目点拨】本题主要考查了空间几何题中线面夹角的计算,属于基础题.10、A【解题分析】
根据偶函数的性质和单调性即可判断.【题目详解】解:对,,且,有在上递增因为定义在上的偶函数所以在上递减又因为,,所以故选:A【题目点拨】考查偶函数的性质以及单调性的应用,基础题.11、C【解题分析】
画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【题目详解】作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为.故选:【题目点拨】解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.12、A【解题分析】
利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【题目详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为.故选:A【题目点拨】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【题目详解】解:依题意可得、、、四点共圆,所以因为,所以,,所以三角形为正三角形,则,,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,,且面面,面所以面,所以外接球的半径所以故答案为:【题目点拨】本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.14、2【解题分析】
直接利用等差数列公式计算得到答案.【题目详解】,,解得,,故.故答案为:2;.【题目点拨】本题考查了等差数列的基本计算,意在考查学生的计算能力.15、【解题分析】
先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.【题目详解】取的外心为,设为球心,连接,则平面,取的中点,连接,,过做于点,易知四边形为矩形,连接,,设,.连接,则,,三点共线,易知,所以,.在和中,,,即,,所以,,得.所以.【题目点拨】本题主要考查几何体的外接球问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.16、【解题分析】
由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【题目详解】解:∵,∴①,②,①﹣②得:,又∵,∴数列的奇数项为首项为1,公差为2的等差数列,∴当为奇数时,,当为偶数时,则为奇数,∴,∴数列的通项公式,故答案为:.【题目点拨】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】
(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【题目详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【题目点拨】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18、(I);(II)最大值为,最小值为.【解题分析】试题分析:(I)由椭圆的标准方程设,得椭圆的参数方程为,消去参数即得直线的普通方程为;(II)关键是处理好与角的关系.过点作与垂直的直线,垂足为,则在中,,故将的最大值与最小值问题转化为椭圆上的点,到定直线的最大值与最小值问题处理.试题解析:(I)曲线C的参数方程为(为参数).直线的普通方程为.(II)曲线C上任意一点到的距离为.则.其中为锐角,且.当时,取到最大值,最大值为.当时,取到最小值,最小值为.【考点定位】1、椭圆和直线的参数方程;2、点到直线的距离公式;3、解直角三角形.19、(1)见解析,40元(2)6000元【解题分析】
(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【题目详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【题目点拨】考查离散型随机变量的分布列及其期望的求法,中档题.20、每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解题分析】
设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【题目详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,,然而,故点不是最优解.因此在可行域的整点中,点使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题三牛顿运动定律第3讲牛顿运动定律的应用练习含答案
- 高中语文 第六单元 一 兼 爱教案 新人教版选修《先秦诸子选读》
- 2024年五年级数学下册 七 包装盒-长方体和正方体 我学会了吗教案 青岛版六三制
- 高中化学新教材同步教案选择性必修第一册第2章第2节第2课时化学平衡常数
- 2024-2025年高中化学 专题2 第2单元 第3课时 化学平衡常数教案 苏教版选修4
- 2023九年级语文上册 第一单元 1 沁园春 雪说课稿 新人教版
- 2024年秋七年级生物上册 3.2 生物体教案2 北京课改版
- 怎样成为一个行业的专家
- 柴油发电机房管理制
- 籽儿吐吐 课件
- 2024年山东省中考英语试卷十二套合卷附答案
- 全国民族团结进步表彰大会全文
- 部编版(2024)一年级道德与法治上册第三单元第11课《对人有礼貌》教学课件
- 2024年事业单位体检告知书
- 广东省2024年中考数学试卷(含答案)
- 2024年新人教版七年级上册生物全册知识点复习资料(新教材)
- 2023年湖北省恩施州中考历史真题(原卷版)
- 部编版《道德与法治》九年级下册教案【全册共2套】
- 土木工程施工设计报告
- 2024年职称评审表
- 漏洞扫描报告模板
评论
0/150
提交评论