2024届湖北省孝感市文昌中学高三高考仿真模拟卷数学试题_第1页
2024届湖北省孝感市文昌中学高三高考仿真模拟卷数学试题_第2页
2024届湖北省孝感市文昌中学高三高考仿真模拟卷数学试题_第3页
2024届湖北省孝感市文昌中学高三高考仿真模拟卷数学试题_第4页
2024届湖北省孝感市文昌中学高三高考仿真模拟卷数学试题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省孝感市文昌中学高三高考仿真模拟卷数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为().A. B. C.1 D.2.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.3.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()A., B.,C., D.,4.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填()A. B. C. D.6.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A. B.C. D.7.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是()A.丙被录用了 B.乙被录用了 C.甲被录用了 D.无法确定谁被录用了8.已知正四面体的内切球体积为v,外接球的体积为V,则()A.4 B.8 C.9 D.279.已知复数满足,(为虚数单位),则()A. B. C. D.310.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.11.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.12.设,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.,则f(f(2))的值为____________.14.(5分)如图是一个算法的流程图,若输出的值是,则输入的值为____________.15.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.16.如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_______,点到直线的距离的最大值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,平面,,,.(I)证明:;(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.18.(12分)在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于M,N两点,求△MON的面积.19.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:“小爱同学”智能音箱“天猫精灵”智能音箱合计男4560105女554095合计100100200(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82820.(12分)如图,底面ABCD是边长为2的菱形,,平面ABCD,,,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.21.(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.22.(10分)已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

首先由三视图还原几何体,进一步求出几何体的棱长.【题目详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为.故选:B.【题目点拨】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.2、A【解题分析】

由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【题目详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【题目点拨】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.3、D【解题分析】

根据指数函数的图象和特征以及图象的平移可得正确的选项.【题目详解】从题设中提供的图像可以看出,故得,故选:D.【题目点拨】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.4、B【解题分析】

试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题5、C【解题分析】

模拟执行程序框图,即可容易求得结果.【题目详解】运行该程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此时要输出的值为99.此时.故选:C.【题目点拨】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.6、D【解题分析】

连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【题目详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【题目点拨】本题考查向量的线性运算问题,属于基础题7、C【解题分析】

假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【题目详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【题目点拨】本题考查了逻辑推理能力,属基础题.8、D【解题分析】

设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【题目详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,,,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,,在中,由勾股定理得:,,解得,,故选:D【题目点拨】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.9、A【解题分析】,故,故选A.10、C【解题分析】

画出几何体的图形,然后转化判断四个命题的真假即可.【题目详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.【题目点拨】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.11、A【解题分析】

根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【题目详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【题目点拨】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.12、D【解题分析】

由不等式的性质及换底公式即可得解.【题目详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【题目点拨】本题考查了不等式的性质及换底公式,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

先求f(1),再根据f(1)值所在区间求f(f(1)).【题目详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【题目点拨】本题考查分段函数求值,考查对应性以及基本求解能力.14、或【解题分析】

依题意,当时,由,即,解得;当时,由,解得或(舍去).综上,得或.15、【解题分析】

①根据向量数量积的坐标表示结合两角差的正弦公式的逆用即可得解;②结合①求出,根据面积公式即可得解.【题目详解】①2(sin32°•cos77°﹣cos32°•sin77°),②,,∴,∴.故答案为:.【题目点拨】此题考查平面向量与三角函数解三角形综合应用,涉及平面向量数量积的坐标表示,三角恒等变换,根据三角形面积公式求解三角形面积,综合性强.16、【解题分析】

三棱锥的底面边长和侧棱长都为4,所以在平面的投影为的重心,利用解直角三角形,即可求出点到平面的距离;,可得点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径,即可求出结论.【题目详解】边长为,则中线长为,点到平面的距离为,点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径.又三棱锥的底面边长和侧棱长都为4,以下求过和的两个平行平面间距离,分别取中点,连,则,同理,分别过做,直线确定平面,直线确定平面,则,同理,为所求,,,所以到直线最大距离为.故答案为:;.【题目点拨】本题考查空间中的距离、正四面体的结构特征,考查空间想象能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)【解题分析】

(Ⅰ)取的中点,连接,由,,得三点共线,且,又,再利用线面垂直的判定定理证明.(Ⅱ)设,则,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,两式相加求得,再过作,则平面,即点到平面的距离,由是中点,得到到平面的距离,然后根据与平面所成的角的正弦值为求解.【题目详解】(Ⅰ)取的中点,连接,由,,得三点共线,且,又,,所以平面,所以.(Ⅱ)设,,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,两式相加得:,所以,,过作,则平面,即点到平面的距离,因为是中点,所以为到平面的距离,因为与平面所成的角的正弦值为,即,解得.【题目点拨】本题主要考查线面垂直的判定定理,线面角的应用,还考查了转化化归的思想和空间想象运算求解的能力,属于中档题.18、(1)直线l的普通方程为x+y-4=0.曲线C的直角坐标方程是圆:(x-)2+(y-1)2=4.(2)4【解题分析】

(1)将直线l参数方程中的消去,即可得直线l的普通方程,对曲线C的极坐标方程两边同时乘以,利用可得曲线C的直角坐标方程;(2)求出点到直线的距离,再求出的弦长,从而得出△MON的面积.【题目详解】解:(1)由题意有,得,x+y=4,直线l的普通方程为x+y-4=0.因为ρ=4sin所以ρ=2sinθ+2cosθ,两边同时乘以得,ρ2=2ρsinθ+2ρcosθ,因为,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲线C的直角坐标方程是圆:(x-)2+(y-1)2=4.(2)∵原点O到直线l的距离直线l过圆C的圆心(,1),∴|MN|=2r=4,所以△MON的面积S=|MN|×d=4.【题目点拨】本题考查了直线与圆的极坐标方程与普通方程、参数方程与普通方程的互化知识,解题的关键是正确使用这一转化公式,还考查了直线与圆的位置关系等知识.19、(1)多2350人;(2)有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【解题分析】

(1)根据题意,知100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,即可估计该地区购买“小爱同学”的女性人数和购买“天猫精灵”的女性的人数,即可求得答案;(2)根据列联表和给出的公式,求出,与临界值比较,即可得出结论.【题目详解】解:(1)由题可知,100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,由于地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,估计购买“小爱同学”的女性有人.估计购买“天猫精灵”的女性有人.则,∴估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多2350人.(2)由题可知,,∴有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【题目点拨】本题考查随机抽样估计总体以及独立性检验的应用,考查计算能力.20、(1)证明见解析;(2)【解题分析】

(1)要证明平面平面BDE,只需在平面内找一条直线垂直平面BDE即可;(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系,分别求出平面BEF的法向量,平面的法向量,算出即可.【题目详解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,设AC,BD交于O,取BE的中点G,连FG,OG,,,四边形OCFG是平行四边形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系∵BE与平面ABCD所成的角为,,,,,,.,设平面BEF的法向量为,,,设平面的法向量设二面角的大小为..【题目点拨】本题考查线面垂直证面面垂直、面面所成角的计算,考查学生的计算能力,解决此类问题最关键是准确写

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论