版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省长汀、连城、武平、永定、漳平、上杭六地一中联考2024届高三5月调研数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则,,,的大小关系为()A. B.C. D.2.已知函数,其中,,其图象关于直线对称,对满足的,,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()A. B.C. D.3.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是A. B. C. D.4.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为()A. B. C. D.5.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④6.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.637.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,9.复数满足,则()A. B. C. D.10.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.11.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(
)A. B. C.或 D.或12.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg二、填空题:本题共4小题,每小题5分,共20分。13.直线xsinα+y+2=0的倾斜角的取值范围是________________.14.在△ABC中,()⊥(>1),若角A的最大值为,则实数的值是_______.15.函数过定点________.16.若实数满足约束条件,设的最大值与最小值分别为,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(Ⅰ)证明:;(Ⅱ)证明:();(Ⅲ)证明:.18.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.19.(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,,,且满足.(1)求;(2)若,,求的最大值.20.(12分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.21.(12分)已知函数.(1)当时.①求函数在处的切线方程;②定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.22.(10分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记为参加会议的人中喜欢古典文学的人数,求5的分布列及数学期望附表及公式:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】因为,所以,因为,,所以,.综上;故选D.2、B【解题分析】
根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【题目详解】解:已知函数,其中,,其图像关于直线对称,对满足的,,有,∴.再根据其图像关于直线对称,可得,.∴,∴.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,,故选B.【题目点拨】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.3、A【解题分析】
根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【题目详解】为定义在上的偶函数,图象关于轴对称又在上是增函数在上是减函数,即对于恒成立在上恒成立,即的取值范围为:本题正确选项:【题目点拨】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.4、B【解题分析】
首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【题目详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【题目点拨】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.5、C【解题分析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【题目详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【题目点拨】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.6、D【解题分析】
根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【题目详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【题目点拨】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.7、D【解题分析】
设,整理得到方程组,解方程组即可解决问题.【题目详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D【题目点拨】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.8、D【解题分析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.9、C【解题分析】
利用复数模与除法运算即可得到结果.【题目详解】解:,故选:C【题目点拨】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.10、B【解题分析】
根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【题目详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【题目点拨】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.11、D【解题分析】
由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【题目详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【题目点拨】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.12、D【解题分析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】因为sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是.答案:14、1【解题分析】
把向量进行转化,用表示,利用基本不等式可求实数的值.【题目详解】,解得=1.故答案为:1.【题目点拨】本题主要考查平面向量的数量积应用,综合了基本不等式,侧重考查数学运算的核心素养.15、【解题分析】
令,,与参数无关,即可得到定点.【题目详解】由指数函数的性质,可得,函数值与参数无关,所有过定点.故答案为:【题目点拨】此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.16、【解题分析】
画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【题目详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【题目点拨】本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解题分析】
运用数学归纳法证明即可得到结果化简,运用累加法得出结果运用放缩法和累加法进行求证【题目详解】(Ⅰ)数学归纳法证明时,①当时,成立;②当时,假设成立,则时所以时,成立综上①②可知,时,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【题目点拨】本题考查了数列的综合,运用数学归纳法证明不等式的成立,结合已知条件进行化简求出化简后的结果,利用放缩法求出不等式,然后两边同时取对数再进行证明,本题较为困难。18、(1)(2)证明见解析【解题分析】
(1),①当时,,②两式相减即得数列的通项公式;(2)先求出,再利用裂项相消法求和证明.【题目详解】(1)解:,①当时,.当时,,②由①-②,得,因为符合上式,所以.(2)证明:因为,所以.【题目点拨】本题主要考查数列通项的求法,考查数列求和,意在考查学生对这些知识的理解掌握水平.19、(1)(2)【解题分析】
(1)利用正弦定理和余弦定理化简,根据勾股定理逆定理求得.(2)设,由此求得的表达式,利用三角函数最值的求法,求得的最大值.【题目详解】(1)设,,,由,根据正弦定理和余弦定理得.化简整理得.由勾股定理逆定理得.(2)设,,由(1)的结论知.在中,,由,所以.在中,,由,所以.所以,由,所以当,即时,取得最大值,且最大值为.【题目点拨】本小题考查正弦定理,余弦定理,勾股定理,解三角形,三角函数性质及其三角恒等变换等基础知识;考查运算求解能力,推理论证能力,化归与转换思想,应用意识.20、(1);(2).【解题分析】
(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可.【题目详解】以为原点,所在直线分别为轴建系,设所以,,所以异面直线与直线所成的角的余弦值为,异面直线与直线所成的角的大小为.(2)因为,,设是面的一个法向量,所以有即,令,,故,又,所以点到平面的距离为.【题目点拨】本题主要考查向量法求异面直线所成角的大小和点到面的距离,意在考查学生的数学建模以及数学运算能力.21、(1)①;②8079;(2).【解题分析】
(1)①时,,,利用导数的几何意义能求出函数在处的切线方程.②由,得,由此能求出的值.(2)根据若对任意给定的,,在区间,上总存在两个不同的,使得成立,得到函数在区间,上不单调,从而求得的取值范围.【题目详解】(1)①∵,∴∴,∴,∵,所以切线方程为.②,.令,则,.因为①,所以②,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《材料工程测试技术》2021-2022学年第一学期期末试卷
- 光伏组件销售合同范本
- 果园分包合同书模板
- 合同编第十九条法条解读
- 2024上海市电视广播广告发布合同(示范文本版)
- 2024化妆品品牌加盟合同
- 2024建筑委托合同协议
- 沈阳理工大学《Java程序设计基础》2021-2022学年期末试卷
- 2024表演场地租赁合同范本
- 2024开店双方入股合同协议范文
- 中国湿疹诊疗指南
- LTC流程介绍完整版
- 饲料加工系统粉尘防爆安全规程
- 一年级上册美术课件-第11课-花儿寄深情-▏人教新课标
- 植物的象征意义
- 夏商周考古课件 第5章 西周文化(1、2节)
- 二年级上册美术教案-7. 去远航 -冀教版
- 装配图画法及要求课件
- 翻译实习教学大纲
- 心力衰竭-英文版课件
- 邀请回国探亲邀请函范本
评论
0/150
提交评论