版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省秦皇岛市青龙满族自治县2023-2024学年八上数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AB和AD,点A B.AB和AC,点BC.AC和BC,点C D.AD和BC,点D2.如图,已知,,则的度数是()A. B. C. D.3.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.104.下列各组数中,以它们为边的三角形不是直角三角形的是()A.3,4,5 B.5,12,13 C.7,24,25 D.5,7,95.如果ab>0,a+b<0,那么下面各式:①;②=1;③=-b.其中正确的是()A.①② B.①③ C.①②③ D.②③6.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为()A.2.6×10﹣6B.2.6×10﹣5C.26×10﹣8D.0.26x10﹣77.若一次函数(为常数,且)的图象经过点,,则不等式的解为()A. B. C. D.8.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.8,15,17 B.4,6,8 C.3,4,5 D.6,8,109.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③ B.①②④ C.①③④ D.①②③④10.点P(–2,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2019BC与∠A2019CD的平分线相交于点A2020,得∠A2020,则∠A2020=_____.12.一个多边形的每个外角都等于,则这个多边形的边数是___________13.请你写出一个图像不经过第三象限的一次函数解析式__________.14.如果,那么值是_____.15.如图,AB=AC,∠C=36°,AC的垂直平分线MN交BC于点D,则∠DAB=_____.16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=_____°.17.27的相反数的立方根是.18.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN的周长最小时,∠AMN+∠ANM的度数是_____.三、解答题(共66分)19.(10分)如图,在中,,的垂直平分线交于点,交于点.(1)若,求的长;(2)若,求证:是等腰三角形.20.(6分)在正方形ABCD中,点E是射线BC上的点,直线AF与直线AB关于直线AE对称,直线AF交射线CD于点F.(1)如图①,当点E是线段BC的中点时,求证:AF=AB+CF;(2)如图②,当∠BAE=30°时,求证:AF=2AB﹣2CF;(3)如图③,当∠BAE=60°时,(2)中的结论是否还成立?若不成立,请判断AF与AB、CF之间的数量关系,并加以证明.21.(6分)如图,已知△ABC中,∠ACB=,CD是AB边上的高,AE是∠BAC的平分线,且与CD交于点F,(1)求证:CE=CF;(2)过点F作FG‖AB,交边BC于点G,求证:CG=EB.22.(8分)如图,点A、B、C表示三个自然村庄,自来水公司准备在其间建一水厂P,要求水厂P到三个村的距离相等。请你用“尺规作图”帮自来水公司找到P的位置(不要求写出作法但要保留作图痕迹).23.(8分)如图,在长度为1个单位的小正方形网格中,点、、在小正形的顶点上.(1)在图中画出与关于直线成轴对称的;(2)在直线上找一点(在图中标出,不写作法,保留作图痕迹),使的长最小,并说明理由.24.(8分)为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?25.(10分)如图,是等边三角形,延长到,使,点是边的中点,连接并延长交于.求证:(1);(2).26.(10分)解下列分式方程:(1)=1(2)
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【详解】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:D.【点睛】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.2、A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角的和解答即可.【详解】∵,,∴=130°-20°=110°.故选A.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角的和.3、C【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【详解】解:如图①点C以点A为标准,AB为底边,符合点C的有5个;
②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.
所以符合条件的点C共有9个.
故选:C.【点睛】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.4、D【分析】欲判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.【详解】A、,能构成直角三角形,不符合题意;
B、,能构成直角三角形,不符合题意;
C、,能构成直角三角形,不符合题意;
D、,不能构成直角三角形,符合题意.
故选:D.【点睛】本题主要考查了勾股定理的逆定理:已知△ABC的三边满足,则△ABC是直角三角形.5、D【分析】先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.【详解】∵ab>0,a+b<0,∴a<0,b<0,∴无意义,故①不正确;,故②正确,故③正确.故选D.【点睛】本题考查了二次根式的性质,熟练掌握性质是解答本题的关键.,,(a≥0,b>0).6、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000021=2.1×10﹣1.故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【分析】可直接画出图像,利用数形结合直接读出不等式的解【详解】如下图图象,易得时,故选D【点睛】本题考查一次函数与不等式的关系,本题关键在于利用画出图像,利用数形结合进行解题8、B【解析】试题解析:A.
故是直角三角形,故错误;B.
故不是直角三角形,正确;C.
故是直角三角形,故错误;D.
故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.9、C【解析】对于①,作∠B或∠C的平分线即可,②不能,③作斜边上的高,④在BC上取点D,使BD=BA即可.【详解】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①图,作∠ABC的平分线交AC于点D,则分成的两个三角形的角的度数分别为:36°,36°,108°和36°,72°72°,符合要求;②图不能被一条直线分成两个小等腰三角形;③图,作等腰直角三角形斜边上的高AD,则可把它分为两个小等腰直角三角形,符合要求;④图,在BC上取点D,使BD=BA,作直线AD,则分成的两个三角形的角的度数分别为:36°,72,72°和36°,36°,108°,符合要求.故选C.【点睛】本题考查了等腰三角形的判定和三角形的内角和定理,在等腰三角形中,从一个顶点向对边引一条线段,分原等腰三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.10、B【分析】根据各象限中点的坐标特征进行判断即可.【详解】第二象限中的点的横坐标为负数,纵坐标为正数.故选B.二、填空题(每小题3分,共24分)11、【分析】根据角平分线的定义以及三角形外角的性质,可知:∠A1=∠A,∠A2=∠A1=∠A,…,以此类推,即可得到答案.【详解】∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A1CD=∠A1+∠A1BC,即:∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD−∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD−∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知:∠A2020=∠A=.故答案为:.【点睛】本题主要考查三角形的外角的性质,以及角平分线的定义,掌握三角形的外角等于不相邻的内角的和,是解题的关键.12、6【分析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【详解】故个多边形是六边形.故答案为:6.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.13、(答案不唯一).【解析】解:由题意可知,一次函数经过一、二、四象限∴k<0;b>0∴(答案不唯一)故答案为(答案不唯一).14、1【分析】首先根据二次根式有意义的条件求出x,y的值,然后代入即可求出答案.【详解】根据二次根式有意义的条件可知解得∴故答案为:1.【点睛】本题主要考查代数式求值,掌握二次根式有意义的条件,求出相应的x,y的值是解题的关键.15、72°【解析】根据等腰三角形的性质得到∠B=∠C=36°,由线段垂直平分线的性质得到CD=AD,得到∠CAD=∠C=36°,根据外角的性质得到∠ADB=∠C+∠CAD=72°,根据三角形的内角和即可得到结论.【详解】解:∵AB=AC,∠C=36°,∴∠B=∠C=36°,∵AC的垂直平分线MN交BC于点D,∴CD=AD,∴∠CAD=∠C=36°,∴∠ADB=∠C+∠CAD=72°,∴∠DAB=180°﹣∠ADB﹣∠B=72°,故答案为72°【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握等腰三角形的性质是解题的关键.16、1【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】解:∵∠3=30°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,
∴∠4=180°﹣60°﹣30°=90°,
∴∠5+∠6=180°﹣80°=90°,
∴∠5=180°﹣∠2﹣108°
①,
∠6=180°﹣90°﹣∠1=90°﹣∠1②,
∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=90°,即∠1+∠2=1°.
故答案为1.【点睛】本题考查了三角形的内角和定理,熟知正三角形、正四边形、正五边形个内角的度数是解答本题的关键.17、-1【分析】先根据相反数的定义得到27的相反数,再开立方,可得到答案.【详解】27的相反数是﹣27,﹣27的立方根是﹣1.故答案为:﹣1.【点睛】本题考查了实数的性质,熟练掌握相反数的定义和利用立方根是解答本题的关键.18、160°.【解析】分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠AA″A′=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.详解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=80°.由轴对称图形的性质可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°.故答案为:160°.点睛:本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.三、解答题(共66分)19、(1);(2)见解析.【分析】(1)根据线段垂直平分线的性质可得EA=EB,即,结合可求出,进而得到CE的长;(2)根据三角形内角和定理和等腰三角形的性质求出∠C=72°,根据线段垂直平分线的性质可得EA=EB,求出∠EBA=∠A=36°,然后利用三角形外角的性质得到∠BEC=72°即可得出结论.【详解】解:(1)∵DE是AB的垂直平分线,∴EA=EB,∴,∵,∴,∴;(2)∵,,∴∠ABC=∠C=,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=36°,∴∠BEC=∠EBA+∠A=72°,∴∠C=∠BEC,∴BC=BE,即是等腰三角形.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的判定和性质、三角形内角和定理以及三角形外角的性质等知识,灵活运用相关性质定理进行推理计算是解题关键.20、(1)证明见解析;(2)证明见解析;(3)成立,理由见解析【分析】(1)由折叠的性质得出AG=AB,BE=GE,进而用HL判断出Rt△EGF≌Rt△ECF,代换即可得出结论;
(2)利用含30°的直角三角形的性质即可证明;
(3)先判断出△AIF为等边三角形,得出AI=FI=AF,再代换即可得出结论.【详解】(1)如图,过点E作EG⊥AF于点G,连接EF.由折叠性质知,△ABE≌△AGE,∴AG=AB,BE=GE,∵BE=CE,∴GE=CE,在Rt△EGF和Rt△ECF中,,∴Rt△EGF≌Rt△ECF,(HL)∴FG=FC,∵AF=AG+FG,∴AF=AB+FC;(2)如图,延长AF、BC交于点H.在正方形ABCD中,∠B=90°,由折叠性质知,∠BAE=∠HAE=30°,∴∠H=90°-∠BAE-∠HAE=30°,Rt△ABH中,∠B=90°,∠H=30°,∴AH=2AB,同理:FH=2FC,∵AF=AH﹣FH,∴AF=2AB﹣2FC;(3)由折叠知,∠BAE=∠FAE=60°,
∴∠DAE=∠DAF=30°,又∵AD⊥IF,
∴△AIF为等边三角形,
∴AF=AI=FI,
由(2)可得AE=2AB,
IE=2IC,
∵IC=FC-FI,
∴IC=FC-AF,
∴IE=2FC-2AF,
∵AI=AE-IE,
∴AF=2AB-(2FC-2AF)
=2FC-2AB.【点睛】本题主要考查了正方形的性质,折叠的性质,直角三角形的性质,等边三角形的性质,解本题的关键是找出线段之间的关系.21、(1)见解析;(2)见解析【分析】(1)要得到CE=CF证明∠CFE=∠CEF即可,据已知条件∠CAE+∠CEA=90°,∠FAD+∠AFD=90°,因为AE平分∠CAB,所以∠AFD=∠AEC;因为∠AFD=∠CFE,即可得∠CFE=∠CEF,即得结论CF=CE.(2)过点E作,垂足为点H,如能证得,即可得解.【详解】解:(1)∵AE平分,∴∵,且,∴∠ACD=∠B∵∠CFE=∠CAE+∠ACD,∠CEF=∠BAE+∠B∴∠CFE=∠CEF∴(2)过点E作,垂足为点H,∵AE平分,且∴.又∵,∴∵,且FG∥AB,∴∠CGF=∠B,且,∠CFG=90°在中,∵,∴∴.【点睛】本题主要考查全等三角形的判定,涉及到直角三角形,等腰三角形、平行线等的性质,是一道综合性题目,比较复杂.解题的关键是熟练掌握所学的知识进行证明.22、见解析.【分析】作出AB、AC的垂直平分线,两线的交点就是所要求作的P点.【详解】解:如图所示,作出AB、AC的垂直平分线,两线的交点就是所要求作的P点.
【点睛】此题主要考查了作图与应用设计作图,关键是掌握线段垂直平分线的作法.23、(1)图见解析;(2)图见解析,理由见解析【分析】(1)先分别找到A、B、C关于l的对称点,然后连接即可;(2)连接,交l于点P,连接BP,根据轴对称的性质和两点之间线段最短即可说明.【详解】解:(1)分别找到A、B、C关于l的对称点,然后连接,如图所示,即为所求;(2)连接,交l于点P,连接BP,由轴对称的性质可知BP=∴此时,根据两点之间线段最短,即为的最小值,如图所示,点P即为所求.【点睛】此题考查的是画已知三角形的轴对称图形和轴对称性质的应用,掌握轴对称图形的画法、轴对称的性质和两点之间线段最短是解决此题的关键.24、(1)汽车行驶中每千米用电的费用是元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是元,则每千米用油的费用为元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市县(2024年-2025年小学五年级语文)统编版阶段练习(下学期)试卷及答案
- 四年级数学(除数是两位数)计算题专项练习及答案
- 高三地理第一轮教案-中国地理
- 山西省大同市2024-2025学年上学期期中教学质量监测八年级物理(含答案)
- 低音吉他产业运行及前景预测报告
- 头发护理咨询行业市场调研分析报告
- 宠物用除虱梳产业规划专项研究报告
- 勺形铲餐具市场需求与消费特点分析
- 人教版英语八年级下册 Unit 1 Section A (1a-2d)随堂练习
- 人教版八年级英语上册Unit 3 Section A 测试卷
- gyb-创业意识培训课件针对学生
- 模具专业职业生涯规划书【优秀8篇】
- 革命根据地的建立和红军长征课件
- 2023年05月2023年广东省中医院招考聘用(第三批)笔试题库含答案解析
- 施工现场质量标准化实施方案C
- 压气站压缩机试运投产方案
- 国有企业内部专家评聘管理办法
- 信息化项目启动会领导讲话8篇
- 毕淑敏中考阅读理解14篇(含答案)
- 《第一节字之初本为画-汉字的起源》教学设计(部级优课)语文教案
- 人美版 美术 四年级上册 第十六课《我们的现在和将来》说课稿
评论
0/150
提交评论