河北省保定市回民中学2023-2024学年八上数学期末调研模拟试题含解析_第1页
河北省保定市回民中学2023-2024学年八上数学期末调研模拟试题含解析_第2页
河北省保定市回民中学2023-2024学年八上数学期末调研模拟试题含解析_第3页
河北省保定市回民中学2023-2024学年八上数学期末调研模拟试题含解析_第4页
河北省保定市回民中学2023-2024学年八上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市回民中学2023-2024学年八上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在中,,点是和角平分线的交点,则等于()A. B. C. D.2.如图,在平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,连接.下列结论中:①;②是等边角形:③;④;⑤.其中正确的是()A.②③⑤ B.①④⑤ C.①②③ D.①②④3.在实数范围内,有意义,则的取值范围是()A. B. C. D.4.要使二次根式有意义,字母x必须满足的条件是()A.x≤2 B.x<2 C.x≤-2 D.x<-25.下列各式从左到右的变形正确的是()A.=-1 B.= C.= D.=6.如图所示,在锐角三角形ABC中,AB=8,AC=5,BC=6,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,下列结论:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周长是7,④,⑤.其中正确的个数有()A.2 B.3 C.4 D.57.8的立方根为()A.4 B.﹣4 C.2 D.﹣28.如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE,当BD+BE的值最小时,则H点的坐标为()A.(0,4) B.(0,5) C.(0,) D.(0,)9.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是10.在给出的一组数据0,,,3.14,,中,无理数有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.当时,分式有意义.12.若分式的值为0,则y=_______13.已知一次函数,当时,____________.14.如图,在△ABC中,AB=AC=12,BC=8,BE是高,且点D、F分别是边AB、BC的中点,则△DEF的周长等于_____________________.15.在△ABC中,D是BC延长线上一点,∠B

=

40°,∠ACD

=

120°,则∠A=_________.16.如图,点、、都是数轴上的点,点、关于点对称,若点、表示的数分别是2,,则点表示的数为____________.17.如图,在一个长为8cm,宽为5cm的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为2cm的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是_____.18.计算=_______.三、解答题(共66分)19.(10分)如图,在中,,,是的平分线,,垂足是,和的延长线交于点.(1)在图中找出与全等的三角形,并说出全等的理由;(2)说明;(3)如果,直接写出的长为.20.(6分)如图,在△ABC中,AC=21,BC=13,D是AC边上一点,BD=12,AD=1.(1)求证:BD⊥AC.(2)若E是边AB上的动点,求线段DE的最小值.21.(6分)小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是

;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是

;如图③,M为边AC延长线上一点,则BD、MF的位置关系是

;(2)请就图①、图②、或图③中的一种情况,给出证明.22.(8分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出关于y轴对称的;(2)写出点的坐标(直接写答案);(3)在y轴上画出点P,使PB+PC最小.23.(8分)周末了,李芳的妈妈从菜市场买回来千克萝卜和千克排骨.请你通过列方程组求出这天萝卜、排骨的售价分别是多少(单位:元千克)?24.(8分)直线PA是一次函数y=x+1的图象,直线PB是一次函数y=-2x+2的图象.(1)求A,B,P三点的坐标;(2)求四边形PQOB的面积;25.(10分)如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA=28°,求∠ABE的大小.26.(10分)如图,在中,,点在内,,,点在外,,.(1)求的度数.(2)判断的形状并加以证明.(3)连接,若,,求的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据三角形的内角和定理和角平分线的定义,得到,然后得到答案.【详解】解:∵在中,,∴,∵BD平分∠ABC,DC平分∠ACB,∴,∴,∴;故选:C.【点睛】本题考查了三角形的内角和定理和角平分线的定义,解题的关键是熟练掌握所学的定理和定义进行解题,正确得到.2、D【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出,④正确;由△AEC与△DCE同底等高,得出,进而得出.⑤不正确.【详解】解:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠EAD=∠AEB,

又∵AE平分∠BAD,

∴∠BAE=∠DAE,

∴∠BAE=∠BEA,

∴AB=BE,

∵AB=AE,

∴△ABE是等边三角形,②正确;

∴∠ABE=∠EAD=60°,

∵AB=AE,BC=AD,

∴△ABC≌△EAD(SAS),①正确;

∵△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),

∴,④正确;

又∵△AEC与△DEC同底等高,

∴,

∴,⑤不正确.

若AD与AF相等,即∠AFD=∠ADF=∠DEC,题中未限定这一条件,

∴③不一定正确;

故正确的为:①②④.故选:D.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定.此题比较复杂,注意将每个问题仔细分析.3、A【分析】分式有意义的条件:分母不为1,据此即可得答案.【详解】∵有意义,∴x-2≠1,解得:x≠2,故选:A.【点睛】本题考查分式有意义的条件,要使分式有意义,分母不为1.4、A【解析】∵要使二次根式有意义,∴2-x≥0,∴x≤2.故选A.5、A【解析】==-1,A选项正确;≠,B选项错误;≠,C选项错误;(-)2=,D选项错误.故选A.点睛:掌握分式的性质.6、C【分析】根据翻折变换的性质得到DC=DE,BE=BC,,根据已知求出AE的长,根据三角形周长公式计算即可,根据高相等判断,根据△BCD≅△BDE判断①的对错,根据等高,则面积的比等于底边的比判断⑤.【详解】根据翻折变换的性质得到DC=DE,BE=BC=6,,故DE⊥AB错误,即②错误∴△BCD≅△BDE,∴∠CBD=∠EBD,故①正确;

∵AB=8,∴AE=AB-BE=2,

△AED的周长为:AD+AE+DE=AC+AE=7,故③正确;设三角形BCD的高为h,则三角形BAD的高也为h∴,故④正确;当三角形BCD的高为H,底边为CD,则三角形BAD的高也为H,底边为AD∴,故⑤正确.故选C.【点睛】本题考查的是翻折变换的知识涉及了三角形全等、等高等知识点,掌握翻折变换的性质、找准对应关系是解题的关键.7、C【分析】根据立方根的定义求解即可.【详解】解:∵13=8,∴8的立方根为:1.故选:C.【点睛】本题考查立方根:若一个数的立方等于a,那么这个数叫a的立方根.8、A【分析】作EF⊥BC于F,设AD=EC=x.利用勾股定理可得BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到G(,3),K(,)的距离之和最小.【详解】解:由题意A(0,),B(-3,0),C(3,0),∴AB=AC=8,作EF⊥BC于F,设AD=EC=x.∵EF∥AO,∴,∴EF=,CF=,∵OH∥EF,∴,∴OH=,∴BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到K(,3),G(,)的距离之和最小.设G关于x轴的对称点G′(,),直线G′K的解析式为y=kx+b,则有,解得k=,b=,∴直线G′K的解析式为y=x,当y=0时,x=,∴当x=时,MG+MK的值最小,此时OH===4,∴当BD+BE的值最小时,则H点的坐标为(0,4),故选A.【点睛】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.9、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数10、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:这一组数中,无理数有:,,共3个故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像1.1111111111…,等有这样规律的数.二、填空题(每小题3分,共24分)11、【分析】根据分式有意义的条件:分母不等于0即可求解.【详解】根据题意得:x﹣1≠0,解得:x≠1.故答案为:≠1.【点睛】本题考查了分式有意义的条件,是一个基础题目.12、-1【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式的值等于0,则|y|-1=0,y=±1.又∵1-y≠0,y≠1,∴y=-1.若分式的值等于0,则y=-1.

故答案为-1.【点睛】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况.13、【分析】把代入即可求解.【详解】把代入一次函数得-1=-2x+3解得x=2,故填:2.【点睛】此题主要考查一次函数的性质,解题的关键是熟知坐标与函数的关系.14、1【分析】根据三角形中位线定理分别求出DF,再根据直角三角形斜边的中线等于斜边的一半计算出DE、EF即可.【详解】解:点D、F分别是边AB、BC的中点,

∴DF=AC=6∵BE是高∴∠BEC=∠BEA=90°∴DE=AB=6,EF=BC=4

∴△DEF的周长=DE+DF+EF=1

故答案为:1.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半和三角形中位线的性质是解题的关键.15、80°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.【详解】∵∠ACD=∠A+∠B,

∴∠A=∠ACD-∠B=120°-40°=80°.

故答案为:80°.【点睛】本题主要考查了三角形外角的性质,解答的关键是沟通外角和内角的关系.16、4-【分析】先求出线段AB的长度,根据对称点的关系得到AC=AB,即可利用点A得到点C所表示的数.【详解】∵点、表示的数分别是2,,∴AB=-2,∵点、关于点对称,∴AC=AB=-2,∴点C所表示的数是:2-(-2)=4-,故答案为:4-.【点睛】此题考查数轴上两点间的距离公式,对称点的关系,点的平移规律,利用点的对称关系得到AC的长度是解题的关键.17、13cm.【分析】解答此题要将木块展开,然后根据两点之间线段最短解答.【详解】由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为8+2×2=12cm;宽为5cm.于是最短路径为:=13cm.故答案为13cm.【点睛】本题考查了四边形中点到点的距离问题,掌握勾股定理是解题的关键.18、【分析】先运用零次幂和负整数次幂化简,然后再计算即可.【详解】解:.故答案为:.【点睛】本题主要考查了零次幂和负整数次幂,运用零次幂和负整数次幂对原式化简成为解答本题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)1﹣1.【分析】(1)由∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,∠ADB=∠EDC,锝∠ABD=∠ACF,根据ASA即可证明△ABD≌△ACF,(2)由△ABD≌△ACF,得BD=CF,根据ASA证明△FBE≌△CBE,得EF=EC,进而得到结论;(3)过点D作DM⊥BC于点M,由BD是∠ABC的平分线,得AD=DM,由∠ACB=41°,得CD==,进而即可得到答案.【详解】(1)△ABD≌△ACF,理由如下:∵∠BAC=90°,BD⊥CE,∴∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,∵∠ADB=∠EDC,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA);(2)∵△ABD≌△ACF,∴BD=CF,∵BD是∠ABC的平分线,∴∠FBE=∠CBE,在△FBE和△CBE中,,∴△FBE≌△CBE(ASA),∴EF=EC,∴CF=2CE,∴BD=2CE;(3)过点D作DM⊥BC于点M,∵BD是∠ABC的平分线,,∴AD=DM,∵=1,∴∠ACB=41°,∴CD==,∴AD+CD=AD+=AC=1,∴AD==1﹣1.故答案是:1﹣1.【点睛】本题主要考查全等三角形的判定和性质定理以及等腰直角三角形的性质定理,掌握三角形全等的判定定理,是解题的关键.20、(1)证明见解析;(2)线段DE使得最小值为9.2.【分析】(1)利用勾股定理的逆定理解决问题即可.

(2)根据垂线段最短可得出当DE⊥AB时,DE长度最小,再利用面积法可求出线段DE的最小值.【详解】解:(1)∵AC=21,AD=1,∴CD=AC﹣AD=5,在△BCD中,BD2+CD2=122+52=19=BC2,∴∠BDC=90°,∴BD⊥AC.(2)当DE⊥AB时,DE最短,在Rt△ABD中,AB==20,∵•AD•DB=•AB•DE,∴DE==9.2,∴线段DE使得最小值为9.2.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识.21、(1)BD∥MF,BD⊥MF,BD⊥MF;(2)证明见解析.【详解】试题分析:(1)平行;垂直;垂直;(2)选①证明BD∥MF理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF.选②证明BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠C=∠AME+∠C=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠ABD+∠ADB=90°,∴∠AMF+∠ADB=90°,∴BD⊥MF.选③证明BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠ACB=∠AME+∠ACB=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠AMF+∠F=90°,∴∠ABD+∠F=90°,∴BD⊥MF.考点:1.平行线的判定;2.角平分线的性质22、(1)图见解析;(2);(3)图见解析.【分析】(1)先根据轴对称的性质分别描出点,再顺次连接即可得;(2)根据点坐标关于y轴对称的变化规律即可得;(3)先根据轴对称的性质可得,再根据两点之间线段最短即可得.【详解】(1)先根据轴对称的性质分别描出点,再顺次连接即可得到,如图所示:(2)点坐标关于y轴对称的变化规律:横坐标变为相反数,纵坐标不变;(3)由轴对称的性质得:则由两点之间线段最短得:当三点共线时,取得最小值,最小值为如图,连接,与y轴的交点P即为所求.【点睛】本题考查了画轴对称图形、点坐标关于y轴对称的变化规律、两点之间线段最短,熟练掌握轴对称的性质是解题关键.23、这个月萝卜的售价是元千克,排骨的售价是元千克【分析】设上月萝卜的单价是x元/千克,排骨的单价y元/千克,根据小明的爸爸和妈妈的对话找到等量关系列出方程求解即可.【详解】解:设上个月萝卜的售价是元千克,排骨的售价是元千克.根据题意,得,解这个方程组,得.所以(元千克),(元千克).所以,这个月萝卜的售价是元千克,排骨的售价是元千克.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组,再求解.24、(1)A(-1,0);B(1,0),P(,);(2).【分析】(1)令一次函数y=x+1与一次函数y=﹣2x+2的y=0可分别求出A,B的坐标,再由可求出点P的坐标;(2)设直线PB与y轴交于M点,根据四边形PQOB的面积=S△BOM﹣S△QPM即可求解.【详解】(1)∵一次函数y=x+1的图象与x轴交于点A,∴A(﹣1,0),一次函数y=﹣2x+2的图象与x轴交于点B,∴B(1,0),由,解得,∴P(,).(2)设直线PA与y轴交于点Q,则Q(0,1),直线PB与y轴交于点M,则M(0,2),∴四边形PQOB的面积=S△BOM﹣S△QPM=×1×2﹣×1×【点睛】本题考查一次函数综合题型,难度一般,关键在于能够把四边形的面积分成两个三角形面积的差.25、28°【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.【详解】如图,过点E作EF⊥AB于F,

∵∠D=∠C=90°,AE平分∠DAB,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论