河南省府店镇第三初级中学2024届数学八上期末监测模拟试题含解析_第1页
河南省府店镇第三初级中学2024届数学八上期末监测模拟试题含解析_第2页
河南省府店镇第三初级中学2024届数学八上期末监测模拟试题含解析_第3页
河南省府店镇第三初级中学2024届数学八上期末监测模拟试题含解析_第4页
河南省府店镇第三初级中学2024届数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省府店镇第三初级中学2024届数学八上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知一个多边形的每个内角都等于,则这个多边形一定是()A.七边形 B.正七边形 C.九边形 D.不存在2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48° B.54° C.74° D.78°3.如图,在等边中,平分交于点,点E、F分别是线段BD,BC上的动点,则的最小值等于()A. B. C. D.4.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.5.在中,,则的长为()A.2 B. C.4 D.4或6.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差7.关于的不等式的解集是,则的取值范围是()A. B. C. D.8.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC9.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5 B.﹣=5C.﹣=5 D.﹣=510.如图,在△ABC中,AB=6,AC=7,BC=5,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.18 B.13 C.12 D.1111.8的平方根为()A.2 B.-2 C. D.12.在平面直角坐标系中,点P(﹣3,7)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.有一种球状细菌,直径约为,那么用科学记数法表示为__________.14.如图,一次函数和交于点,则的解集为___.15.已知:如图,点在同一直线上,,,则______.16.若函数y=kx+3的图象经过点(3,6),则k=_____.17.比较大小______填或号18.如图,在中,已知于点,,,则的度数为______.三、解答题(共78分)19.(8分)如图①,已知是等腰三角形,是边上的高,垂足为,是底边上的高,交于点.(1)若.求证:≌;(2)在图②,图③中,是等腰直角三角形,点在线段上(不含点),,且交于点,,垂足为.ⅰ)如图②,当点与点重合,试写出与的数量关系;ⅱ)如图③,当点在线段上(不含点,)时,ⅰ)中的结论成立吗?如果成立,请证明;如果不成立,请说明理由.20.(8分)如图,是等边三角形,点在上,点在的延长线上,且.(1)如图甲,若点是的中点,求证:(2)如图乙,若点不的中点,是否成立?证明你的结论.(3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由.21.(8分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.22.(10分)解方程组23.(10分)计算题:(写出解题步骤,直接写答案不得分)(1)-22++|-2|(2)+÷32+(-1)202024.(10分)南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同.(1)求甲、乙两种兰花每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下培育甲、乙两种兰花,若培育乙种兰花的株数比甲种兰花的3倍还多10株,求最多购进甲种兰花多少株?25.(12分)(1)如图1,利用直尺规作图,作出的角平分线,交于点.(2)如图2,在(1)的条件下,若,,,求的长.26.如图,是等腰直角三角形,,点是的中点,点,分别在,上,且,探究与的关系,并给出证明.

参考答案一、选择题(每题4分,共48分)1、A【分析】直接利用多边形内角和定理即可求解.【详解】解:设这个多边形的边数为n,则(n-2)×180°=n解得:n=7故选:A【点睛】本题主要考查多边形内角和定理,关键要掌握多边形内角和定理:n边形的内角和是(n-2)×180°(n≥3,且n为整数).2、B【解析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.3、A【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在BA上截取BG=BF,

∵∠ABC的平分线交AC于点D,

∴∠GBE=∠FBE,

在△GBE与△FBE中,∴△GBE≌△FBE(SAS),

∴EG=EF.

∴CE+EF=CE+EG≥CG.

如下图示,当有最小值时,即当CG是点C到直线AB的垂线段时,的最小值是又∵是等边三角形,是的角平分线,∴,∴,故选:A.【点睛】本题考查了轴对称的应用,通过构造全等三角形,把进行转化是解题的关键.4、A【分析】首先根据勾股定理求出斜边的长,再根据三角形等面积法求出则点到的距离即可.【详解】设点到距离为.在中,,∴∵,∴∵∴.故选:A.【点睛】本题考查勾股定理应用,抓住三角形面积为定值这个等量关系是解题关键.5、D【分析】分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【详解】解:当b是斜边时,c=,当b是直角边时,c=,则c=4或,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.6、B【解析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.考点:中位数.7、C【分析】根据不等式的基本性质求解即可.【详解】∵关于的不等式的解集是,∴,解得:,故选:C.【点睛】本题主要考查了不等式的基本性质,解题的关键是熟记不等式的基本性质.8、C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.9、C【分析】根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决.【详解】由题意可得,,故选C.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.10、C【解析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】∵ED是AB的垂直平分线,∴AD=BD.∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=7+5=1.故选C.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.11、C【解析】直接根据平方根的定义求解即可.【详解】解:∵,∴8的平方根为,故答案为:C.【点睛】本题考查了平方根的概念,牢记平方根的概念是解题的关键.12、B【解析】根据各象限内点的坐标特点解答即可.【详解】解:因为点P(﹣3,7)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.【点睛】此题主要考查了点的坐标,解答本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.二、填空题(每题4分,共24分)13、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:=,故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、【分析】找出的图象在的图象上方时对应的x的取值范围即可.【详解】解:由函数图象可得:的解集为:,故答案为:.【点睛】本题考查了利用函数图象求不等式解集,熟练掌握数形结合的数学思想是解题关键.15、【分析】先证明△ABC≌△DEF,得到∠A=∠D,由即可求得∠F的度数.【详解】解:∵BE=CF,

∴BE+EC=CF+EC,即BC=EF,

在△ABC和△DEF中,

∴△ABC≌△DEF(SSS),

∴∠A=∠D∵,∴∠F=180°-62°-40°=78°,故答案为78°.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于基础题.16、1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.17、>【分析】首先将两个二次根式转换形式,然后比较大小即可.【详解】由题意,得∴故答案为:>.【点睛】此题主要考查二次根式的大小比较,熟练掌握,即可解题.18、【分析】根据线段垂直平分线的性质可得AB=AC,根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】解:∵AD⊥BC于点D,BD=DC,

∴AB=AC,

∴∠CAD=∠BAD=20°,

∵AD⊥BC,

∴∠ADC=90°,

∴∠C=70°,

故答案为:70°.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌等腰三角形的性质是解题的关键.三、解答题(共78分)19、(1)见解析;(2)ⅰ);ⅱ)成立,证明见解析【分析】(1)如图1,根据同角的余角相等证明,利用ASA证明≌;(2)①如图2,作辅助线,构建全等三角形,证明≌,则CP=AF,再证明≌,可得结论;②结论仍然成立,过点作的平行线交于,且于的延长线相交于点,证明≌,得,再证明≌即可求解.【详解】证明:(1)∵∴∵∴在和中∴≌;(2)ⅰ):证明过程如下:延长、交于点∵∴∵∴∵是等腰直角三角形,∴AE=CE,又∴≌∴∵∴平分则∵∴又AD=AD∴≌(ASA)∴∴∴;ⅱ)成立,即证明如下:过点作的平行线交于,且于的延长线相交于点∴,∴=∴是等腰直角三角形,∴CQ=QB同理可得≌∴∵=∴BD平分则∵∴=90又BD=BD∴≌(ASA)∴∴∴.【点睛】本题是三角形的综合题,考查了全等三角形的性质和判定、等腰三角形的性质、等腰直角三角形的性质和判定,运用了类比的思想,作辅助线构建全等三角形是本题的关键,难度适中.20、(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题;

(2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案.(3)如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE.【详解】证明:是等边三角形,为中点,,,;(2)成立,如图乙,过作,交于,则是等边三角形,,,,,在和中,即如图3,过点作,交的延长线于点,是等边三角形,也是等边三角形,,,在和中,【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形.21、(1)见解析;(2)见解析【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD,∵AB=AC,∠BAC=90°,D为BC中点,∴AD⊥BC,BD=AD,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF,∴△BDE≌△ADF(SAS),∴ED=FD,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC,∠BAC=90°,D为BC中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.22、【分析】利用加减消元法求出解即可;【详解】解:,①+②得:7x=14,

解得:x=2,把x=2代入①得:6+y=5,

解得:y=-1,则方程组的解为【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.23、(1);(2).【分析】(1)分别按照有理数的乘方,算术平方根以及绝对值的化简方法计算,并合并;(2)分别按照求算术平方根,求立方根乘方及有理数的除法等运算即可.【详解】(1)-22++|-2|==;(2)+÷32+(-1)2020=9-3÷9+1=.【点睛】本题考查了实数的混合运算,牢记相关计算法则,并熟练运用,是解题的关键.24、(1)每株甲种兰花的成本为400元,每株乙种兰花的成本为300元;(2)最多购进甲种兰花20株.【分析】(1)如果设每株乙种兰花的成本为x元,由“每株甲种兰花的成本比每株乙种兰花的成本多100元”,可知每株甲种兰花的成本为(x+100)元.题中有等量关系:用1200元购进的甲种兰花数量=用900元购进的乙种兰花数量,据此列出方程;(2)设购进甲种兰花a株,根据乙种兰花的株数比甲种兰花

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论