高聚物温度形变曲线及高抗冻混凝土(C30F300)配合比的设计与研究_第1页
高聚物温度形变曲线及高抗冻混凝土(C30F300)配合比的设计与研究_第2页
高聚物温度形变曲线及高抗冻混凝土(C30F300)配合比的设计与研究_第3页
高聚物温度形变曲线及高抗冻混凝土(C30F300)配合比的设计与研究_第4页
高聚物温度形变曲线及高抗冻混凝土(C30F300)配合比的设计与研究_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE10高聚物温度—形变曲线的测定在一定的力学负荷下,高分子材料的形变量与温度的关系称为高聚物的温度-形变曲线(或称热机械曲线)。测定高聚物温度一形变曲线,是研究高分子材料力学状态的重要手段。1.热机械分析(TMA)在程序控制温度下测量物质在非振动负荷下的形变与温度关系的一种技术。实验室对具有一定形状的试样施加外力(方式有压缩、扭转、弯曲和拉伸等),根据所测试样的温度-形变曲线就可以得到试样在不同温度(时刻)时的力学性质。2.温度-形变曲线1.温度-形变曲线的意义①了解高聚物的分子运动与力学性质间的关系;②分析高聚物的结构形态(如结晶、交联、增塑、分子量等);③反应在加热过程中发生的化学变化(如交联、分解等);④求其特征温度(如玻璃化温度、黏流温度、熔点和分解温度等);⑤评价材料耐热性、使用温度范围及加工温度等。2.影响温度-形变曲线的因素1.自身性质组成、化学结构、分子量、结晶度、交联度等因素。2.实验条件①升温速率:由运动的松弛性质决定,升温速度快,测得的Tg、Tf都较高;②载荷大小:增加载荷有利于运动过程的进行,因此Tg、Tf均会下降,且高弹态会不明显;③试样尺寸。3.线形非晶高聚物(线性非晶聚合物,线性就是非交联的聚合物,比如PE、PP、PVc(聚氯乙烯)等能用热塑加工的聚合物.非晶就是聚合物不结晶,典型的就是PVC是线性非晶聚合物,还有非硫化橡胶等)图1是线形非晶高聚物的温度-形变曲线,具有“三态”——玻璃态、高弹态和黏流态,以及“两区”——玻璃化转变区和黏流转变区,虚线表示分子量更大时的情形。由于链段的长度主要取决于链的柔性,与分子量关系不大,因此当分子量达到一定值以后玻璃化温度与分子量的关系不大。而分子链整链的相对滑移要克服整链上的分子间作用力,因此分子量越大其黏流温度也越高。交联聚合物,又称交联高分子。是三维网状结构的聚合物。不溶解,不熔融。由于相互交联而不可能发生粘流性流动。当交联度较低时,链段的运动仍可进行,因此仍可表现出高弹性;而当交联度很高,交联点间的链长小到与链段长度相当时,链段的运动也被束缚,此时在整个温度范围内只表现出玻璃态。6.结晶高聚物由于存在晶区和非晶区,高聚物的微晶起到类似交联点的作用。当结晶度较低时,高聚物中非晶部分在温度Tg后仍可表现出高弹性,而当结晶度大于40%左右时,微晶交联点彼此连成一体,形成贯穿整块材料的连续结晶相,此时链短的运动被抑制,在Tg以上也不能表现出高弹性。结晶高聚物当温度大于熔点Tm时,其温度-形变曲线即重合到非晶高聚物的温度-形变曲线上,此时又分两种情况(根据相对分子质量),如Tm>Tf,则熔化后直接进入黏流态,如Tm<Tf,则先进入高弹态。对于结晶性高分子固体急速冷却得到的非晶或低结晶度的高聚物材料,在升温过程中会产生结晶使模量上升。这时如采用间歇加载的方式进行温度-形变测量,就会发现当温度达到Tg后形变上升,然后随结晶过程的进行变形又会下降。科学出版社高分子科学简明教程244聚合物的热性质:小分子的热运动方式有振动/转动和平动,是整个分子链的运动,称为布朗运动。高分子的热运动除了上述分子运动之外,分子链中的一部分(如链段,侧链,侧基,支链)也存在相应的各种运动(微布朗运动),所以高分子的热运动比小分子复杂的多。在高分子的各种运动单元中,链段是最重要的,高分子材料的许多特性与链段的运动直接相关。高分子的热运动有以下特点:(1)分子运动是一个松弛(relaxation)过程。在一定的外力和温度条件下,高分子从一种平衡状态(state)通过分子的热运动达到新的平衡状态,需要克服运动时运动单元所受到的摩擦力,这个克服摩擦力的过程称为松弛过程。松弛是一个缓慢的过程。(2)分子运动与温度有关。温度升高分子增加能量,同时聚合物的体积膨胀,增大运动空间。形变-温度曲线:在一定的负荷和等速升温下,聚合物形变的大小与温度的关系曲线称为形变-温度曲线,又温度-形变曲线,或称为热机械曲线(thermomechanicalcurve)。实验仪器是热机械分析仪(TMAthermomechanicalanalyzer)。根据试样的形状、状态(纤维、薄膜、片状或块状)选择合适的测定方法。针入法,压缩法,拉伸法(薄膜)。严格来说Tg(玻璃化转变温度)是一个温度范围。Glassstateglasstransitionrubberystateviscoelastictransition(粘弹转变区)viscousflowstate(粘流态,即液态)高弹态在形变-温度曲线上是一个平台,这是由于链段运动随温度的升高而加剧能给出更大的变形,另一个方面弹性恢复力随着升温而增加更能抵抗形变,这两个因素相互抵消的结果。粘弹转变区聚合物开始出现流动性,形变迅速增加。此转变温度称为流动温度,记做Tf.如果高分子有交联,低交联度时可以观察到Tg但没有Tf,即不发生粘流;高交联度时(如酚醛树脂等热固性塑料)连Tg也没有。结晶聚合物的形变-温度曲线与非结晶聚合物有很大不同。当结晶度小于40%时,还能观察到Tg;当结晶度大于40%时,Tg观察不到或者不明显。从Tg到Tm这一段温度区内不是高弹态,因为结晶使弹性变差,性能很像皮革,所以称为皮革态。另一方面,对于一般的分子质量,曲线在Tm有一个突变;对于相对分子质量很高的样品,温度高于Tm还不能发生流动,在更高的温度Tf出现之后才会流动。形变-温度曲线也常用另一种形式表示,即模量-温度曲线。因为模量E,形变ε和应力σ遵循胡克定律σ=Eε,所以在一定应力下,模量与形变是倒数关系,随温度的升高模量减小。如果用动态热力分析仪(DMA)在交变应力下测定聚合物模量随温度的变化,能灵敏地检测到玻璃态下比链段小的运动单元(如侧基,侧链)从冻结到运动过程的转变,称为多重转变。DMA初反映E-T关系之外,还检测损耗角正切(力学内耗)Tanδ。前者变现为台阶状,后者变现为峰形,对于各个转变他们是相互对应。因为对于非晶或结晶高分子,Tg或Tm分别称为主转变,α转变或主松弛,小运动单元的转变称为次级转变(secondarytransition)或者次级松弛(secondaryrelaxation),从温度由高到低依次命名为β转变,γ转变,δ转变。用TMA则难以观察到次级转变。次级转变中最重要的是β转变,它对应仅次于链段的最大运动单元的运动,如聚苯乙烯的β转变是苯基的内旋转。β转变温度有时相应于脆化温度Tb,如果Tb或者Tβ高于室温,则材料在室温下处于脆性的,例如聚苯乙烯(Tβ=50℃)是很脆的,而聚碳酸酯(Tβ=-100℃)在室温下是韧性的。Tg是链段运动开始(解冻)的温度,对于塑料来说,Tg是使用的最高温度;对于橡胶来说,Tg是使用的最低温度。Tg的测定:出了温度-形变曲线之外,还包括膨胀计法和DSC法。Tg强烈依赖于测定的方法和测定的条件,不同的方法和条件得到的测定值不同,而且转变温度范围很宽。显然Tg不是热力学相变温度,因为相变温度不会随测定速率的改变为改变。Tg实际上只是高分子链段运动的松弛过程。(玻璃化转变温度理论)自由体积理论认为,非晶高分子中分子之间排列不紧密,分子间有较大的空隙,称为自由体积(freevolume),自由体积提供了链段活动的空间,链段通过转动和位移而改变构象。在Tg以下时,链段的运动被冻结,自由体积Vf也处于冻结状态,其“空隙”的尺寸和分布基本上保持固定。Tg为自由体积降至最低值的临界温度,在此温度下自由体积提供给的空间不足以使聚合物分子链发生构象调整。随着温度的升高,玻璃态聚合物的体积膨胀只是由于分子的振幅、键长和键角等变化,即分子占有体积V0的膨胀(热胀冷缩)。而在Tg以上时,自由体积开始膨胀,为链段运动提供了充足的空间,链段由冻结状态进入运动状态。随着温度的升高,聚合物体积膨胀除分子占有体积膨胀外,还有自由体积的膨胀,体积随温度的变化率比Tg以下时大。因此聚合物的比体积-温度曲线在Tg时发生转折。实验表明,对于不同的聚合物,玻璃态时的自由体积分数为常数,都为2.5%。DSC法:聚合物在进行玻璃化转变时,虽然没有放热或者吸热效应,但是比热容会改变,因此在DSC曲线上表现为基线向吸热方向偏移。聚合物的耐热性:250聚合物保持其外形和固有力学性质的最低温度用来表征聚合物的耐热性,它相当于聚合物的Tg(对于非晶态)、Tm(对于晶态)、分解温度(decompositiontemperature)(Td对于交联聚合物。对于橡胶,Tg是使用下限,Td使用上限。高弹态:非晶聚合物在Tg和Tf之间所处的物理状态称为高弹态。橡胶在室温下就处于高弹态。高弹态是基于链段运动所特有的力学状态,主要特点有:(1)弹性模量很小,即在不大的外力作用下就可以发送很大的变形。(2)形变时有热效应。普通固体材料拉伸时吸热,回缩时放热,并且热效应极小。(3)高弹态具有可恢复的弹性的本质是“熵弹态”。流动温度和粘流态热塑性塑料和橡胶的成型都是聚合物在粘流态下进行的。流动温度Tf是加工的最低温度,实际上为了提高流动性和减少弹性变形,通常加工温度比Tf高,但小于分解温度Td.Tf是整个分子链开始运动的温度。Tf与相对分子质量有很大的关系,相对分子质量越高,Tf越高,由于相对分子质量分布不均匀,多分散性所以Tf不是一个明确的数值,而是一个较宽的温度区域。这也是为什么曲线上Tf的转折不如Tg清晰的原因。∞高抗冻混凝土(C30F300)配合比的设计与研究XX电力建设第二工程公司[摘要]本文通过对鄂温克电厂(2×600MW)新建工程高抗冻混凝土(C30F300)配合比的设计与应用的介绍,为工程在寒冷地区进行该种混凝土的生产,提供了借鉴。[关键词]高抗冻混凝土配合比抗冻试验1.前言鄂温克发电厂(2×600MW)新建工程是我公司在东北地区施工的重点工程。本工程位于内蒙古呼伦贝尔市,属高寒地区,历年的气象资料表明,冬季冰天雪地,历达半年之久,平均气温为零下-1.5°C左右,极端最低气温-48.5℃左右。按混凝土冬期施工及设计要求,混凝土抗冻等级为高抗冻等级(C30F由于本工程工期紧、质量要求严、技术标准高。公司及项目部的目标是:“创高寒地区施工标准,建东北地区样板工程!”,争创“草原杯”及“鲁班奖”!。其中有抗冻要求的主要单位工程为综合水池、循环水泵房等混凝土工程,共计混凝土浇筑量2600余立方,因此解决高抗冻等级(特别是C30F300)混凝土问题刻不容缓。2、混凝土的冻融破坏机理混凝土是一种多孔性材料,在拌制混凝土时为了得到必要的和易性,加入的拌和水总要多于水泥的水化水,这部分多余的水便以游离水的形式滞留于混凝土中,形成连通的占有一定体积的毛细孔,这种孔隙中的自由水就是导致混凝土遭受冻害的主要原因。吸水饱和的混凝土在冻融过程中遭受的破坏力主要由两部分组成:一是膨胀压力。当温度降到0℃以下时,水便凝结成冰,水结成冰且体积膨胀,因受毛细孔约束形成膨胀压力;二是渗透压力。由于表面张力作用,混凝土孔隙中水的冰点随着孔径的减小而降低。因而在粗孔中的水结冰后,冰与过冷水(存在于较细孔和凝胶孔中)的饱和蒸气压差和过冷水之间盐份浓度差引起水份迁移而形成渗透压力另外,过冷水迁移渗透的结果必然会使毛细孔中的冰的体积不断增大,从而形成更大的膨胀压力,当混凝土受冻时,这两种压力会损伤混凝土的内部微观结构,在经过反复多次冻融循环后,损坏逐步积累,不断扩大,发展成相互连通的大裂缝,使混凝土的强度逐渐降低,最后混凝土结构由表及里遭受破坏。3、高抗冻混凝土配合比设计对于有冻融要求的混凝土配台比设计,就是在普通混凝土配合比设计的基础上,把冻融耐久性考虑进去,在我国目前的有关标准、规定中,高抗冻混凝土在满足其它普通混凝土设计的基础上,还必须满足以下要求:①高抗冻混凝土必须添加引气剂,使含气量控制在5%~6%范围内;②高抗冻混凝土必须提高混凝土的密实性,水灰比不应大于0.55;其中掺加外加剂的方法是最经济,最可靠的方法。具体设计与研究步骤如下:3.1合理选择外加剂对于抗冻要求高的混凝土来说,根据标准、规范要求,必须掺加引气剂和减水剂。混凝土掺入引气剂后,可在混凝土中引入微小气泡,减缓膨胀压力,不仅在表面无冰时减轻大体积冰诱导冰冻的出现,并且在过程中也减轻了冰挤出的损害,消纳更多的毛细孔中冰冻所产生的多余体积,有助于保护成熟混凝土免于伤害,从而提高混凝土的抗冻能力;而掺加减水剂不仅能够提高混凝土的和易性、节约水泥,更能够降低混凝土的水灰比并充分水化,从而更可能生产出实际上不包含可冻水的饱和混凝土及不包含毛细水(或数量很少)的混凝土,而凝胶材料中空间极微细,结晶的始发十分困难,并不发生冻结,从而也能提高混凝土的抗冻能力。高抗冻混凝土掺加外加剂有三种方法:①引气剂单掺法;②引气剂和减水剂双掺法③减水引气复合型外加剂;根据我们的经验,双掺比单掺的效果好,掺加复合型外加剂更优于双掺。本项目工程主要使用NF-AII减水引气复合型外加剂。外加剂最优掺量要根据混凝土抗冻设计标号及所用原材料情况(骨料:5~31.5mm碎石、2.3细度模数的中砂、蒙西42.5P.O普通水泥)参考产品推荐掺量(水泥用量的3.0%)表1:含气量含量配合比参数方案水用量(kg/m3)外加剂掺量(%)水胶比砂率(%)坍落度(mm)容重(kg/m3)11752.5%0.3936150240021703.0%0.383715031653.5%0.3737150选取三个配合比进行试配,选取含气量范围在5%~6%的配合比。(见表2)表2:外加剂掺量方案试验论证表方案因素方案一方案二方案三2.5%掺量3.0%掺量3.5%掺量坍落度(mm)175160175含气量(%)3.95.25.8和易性较好、稍泌水好好综合结论不符合要求,不选含气量偏低,考虑到施工时运输、振捣等不可控制的因素,不选符合要求,选择可见:选用水泥用量的3.5%外加剂掺量最为合适。3.2配合比设计一般来说,掺外加剂混凝土配台比没有特殊要求,可按普通混凝土进行设计,但在减水或节约水泥的情况下,应对砂率,水泥用量,水灰比等作适当调整。其步骤为:3.2.1根据《混凝土结构工程施工及验收规范》GB50204-92计算配制Fcu,o=Fcu,k+1.64ó即(1)3.2.2根据保罗米公式计算W/Cfcl,n=ARc(C/W-B)(2)由于(2)式是在不掺外加剂和混合材料的情况下推导的,所以此公式算出的W/C,只能做掺外加剂后计算减水率的参考。根据耐久性要求验证W/C是否满足最大水灰比要求。3.2.3根据粗骨料的最大粒径选择用水量,然后求出水泥用量,由于使用减水剂和引气剂减水率可达15%~20%3.2.4修正砂率和用水量3.2.5根据假定容重法3.2.6对于引气混凝土关键是看它的引气效果是否达到要求,在选取的掺量下,根据外加剂掺量方案,以选取的方案三作为基准配合比,水灰比分别增加和减少0.05,用水量相同,砂率分别增加和减少1%,分别设计出另外两个配合比表3:基准配合比及调整配合比参数编号水泥品种及强度等级水(kg/m3)外加剂掺量坍落度(mm)水胶比砂率(%)S2009-001蒙西42.5P.O1653.5%1500.4236S2009-002蒙西42.5P.O1653.5%1500.3737S2009-003蒙西42.5P.O1653.5%1500.3238这样选择三个配比,通过试样测含气量、坍落度和通过分析28天强度及冻融试验结果,最后确定出满足抗冻设计要求的最佳配合比。名称试验号坍落度(mm)含气量(%)和易性抗压强度试验(MPa)冻融试验结果分析3天7天28天强度损失率重量损失率标准要求<25%标准要求<5%S2009-0011855.8较好、稍泌水12.825.733.3223.6含气量、冻融试验均满足要求,和易性稍差,坍落度偏高,抗压强度值低。S2009-0021705.6好16.533.040.9131.5和易性好,坍落度、含气量、抗压强度及冻融试验均满足要求。S2009-0031054.3好16.937.349.580.8和易性较好,坍落度、含气量偏低,浪费水泥。表4:配合比试配结果统计分析表由表4可以看出,“S2009-002”属最佳配合比,因此选取“S2009-0023.32009年08月24日,循环水泵房及综合水泵房混凝土(标号C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论