河北省廊坊广阳区七校联考2023年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
河北省廊坊广阳区七校联考2023年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
河北省廊坊广阳区七校联考2023年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
河北省廊坊广阳区七校联考2023年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
河北省廊坊广阳区七校联考2023年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省廊坊广阳区七校联考2023年八年级数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列运算正确的是()A.a2+a3=2a5 B.a6÷a2=a3C.a2•a3=a5 D.(2ab2)3=6a3b62.关于函数y=﹣3x+2,下列结论正确的是()A.图象经过点(﹣3,2) B.图象经过第一、三象限C.y的值随着x的值增大而减小 D.y的值随着x的值增大而增大3.已知是方程的解,则的值是()A. B. C. D.4.x,y满足方程,则的值为()A. B.0 C. D.5.计算的结果为()A.1 B.x+1 C. D.6.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A. B. C. D.7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB8.下列四张扑克牌中,左旋转后还是和原来一样的是()A. B. C. D.9.阿牛不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),他认为只须将其中的第2块带去,就能配一块与原来一样大小的三角形,阿牛这样做的理由是()A.SAS B.ASA C.AAS D.SSS10.下列各式可以用完全平方公式分解因式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为,将该三角形沿轴向右平移得到,此时点的坐标为,则线段OA在平移过程中扫过部分的图形面积为______.12.分析下面式子的特征,找规律,三个括号内所填数的和是____________.,,7+(),15+(),(),…13.因式分解:2x3y﹣8xy3=_____.14.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)和(3,0),点C是y轴上的一个动点,连接AC、BC,则△ABC周长的最小值是_____.15.如果,则__________.16.如图,在若中,是边上的高,是平分线.若则=_____17.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形.其中正确说法的是__________.(把你认为正确结论的序号都填上)18.计算:______;三、解答题(共66分)19.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?20.(6分)数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程;(1)小明的想法是:将边长为的正方形右下角剪掉一个边长为的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的想法是:在边长为的正方形内部任意位置剪掉一个边长为的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.21.(6分)(1)计算:;(2)因式分解:3mx2-3my2.22.(8分)如图,已知点、、、在同一条直线上,,,,连结、.(1)请直接写出图中所有的全等三角形(不添加其它的线);(2)从(1)中的全等三角形中任选一组进行证明.23.(8分)如图,CD∥EF,AC⊥AE,且∠α和∠β的度数满足方程组(1)求∠α和∠β的度数.(2)求证:AB∥CD.(3)求∠C的度数.24.(8分)如图在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,(1)若△ABD的周长是19,AB=7,求BC的长;(2)求∠BAD的度数.25.(10分)如图:已知直线经过点,.(1)求直线的解析式;(2)若直线与直线相交于点,求点的坐标;(3)根据图象,直接写出关于的不等式的解集.26.(10分)在中,,,于点.(1)如图1所示,点分别在线段上,且,当时,求线段的长;(2)如图2,点在线段的延长线上,点在线段上,(1)中其他条件不变.①线段的长为;②求线段的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】原式各项计算得到结果,即可作出判断.【详解】A.原式不能合并,错误;B.原式=a4,错误;C.原式=a5,正确;D.原式=8a3b6,错误,故选C.2、C【解析】根据一次函数的性质和一次函数图象的性质,依次分析各个选项,选出正确的选项即可.【详解】A.把x=﹣3代入y=﹣3x+2得:y=11,即A项错误,B.函数y=﹣3x+2的图象经过第一、二、四象限,即B项错误,C.y的值随着x的增大而减小,即C项正确,D.y的值随着x的增大而减小,即D项错误,故选C.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数的性质和一次函数图象是解题的关键.3、D【分析】把代入原方程即可求出m.【详解】把代入得-2m+5-1=0,解得m=2故选D.【点睛】此题主要考查二元一次方程的解,解题的关键是直接代入原方程.4、A【分析】利用整体法将两式相加,即可求得.【详解】解:,①+②得:,,故选A.【点睛】本题考查代数式的求值,灵活运用加减消元的思想是关键.5、C【分析】先进行括号内的计算,然后将除号换为乘号,再进行分式间的约分化简.【详解】原式====.故选C.【点睛】本题考查分式的混合运算,混合运算顺序为:先乘方,再乘除,然后加减,有括号的先算括号里面的.6、B【解析】通过几个特殊点就大致知道图像了,P点在AD段时面积为零,在DC段先升,在CB段因为底和高不变所以面积不变,在BA段下降,故选B7、D【解析】试题分析:根据题意知,BC边为公共边.A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选D.考点:全等三角形的判定.8、C【解析】根据中心对称图形的定义进行判断可得答案.【详解】解:根据中心对称图形的定义,左旋转后还是和原来一样的是只有C.故选C.【点睛】此题目要考查了中心对称图形的相关定义:一个图形绕着中心点旋转后能与自身重合,我们把这种图形叫做中心对称图形,这个中心点称为对称中心.9、B【解析】应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,

只有第2块有完整的两角及夹边,符合ASA.

故选:B.【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个一般三角形全等的一般方法有:SSS、SAS、ASA、AAS.10、D【分析】可以用完全平方公式分解因式的多项式必须是完全平方式,符合结构,对各选项分析判断后利用排除法求解.【详解】解:A、两平方项符号相反,不能用完全平方公式,故本选项错误;B、缺少乘积项,不能用完全平方公式,故本选项错误;C、乘积项不是这两数积的两倍,不能用完全平方公式,故本选项错误;D、,故本选项正确;故选:D.【点睛】本题考查了用完全公式进行因式分解的能力,解题的关键了解完全平方式的结构特点,准确记忆公式,会根据公式的结构判定多项式是否是完全平方式.二、填空题(每小题3分,共24分)11、1【解析】分析:利用平移的性质得出AA′的长,根据等腰直角三角形的性质得到AA′对应的高,再结合平行四边形面积公式求出即可.详解:∵点B的坐标为(0,2),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(2,2),∴AA′=BB′=2,∵△OAB是等腰直角三角形,∴A(,),∴AA′对应的高,∴线段OA在平移过程中扫过部分的图形面积为2×=1.故答案为1.点睛:此题主要考查了平移变换、等腰直角三角形的性质以及平行四边面积求法,利用平移规律得出对应点坐标是解题关键.12、11.1【分析】分别找到这列算式中的整数部分的规律与分式部分的规律即可求解.【详解】这列算式中的整数部分:1,1,7,15…1×2+1=1;1×2+1=7;7×2+1=15;后一个整数是前一个整数的2倍加上1;∴括号内的整数为15×2+1=11,÷2=;÷2=验证:÷2=;要填的三个数分别是:,,11,它们的和是:++11=11=11.1.故答案为:11.1.【点睛】本题分出整数部分和分数部分,各自找出规律,再根据规律进行求解.13、【分析】先提取公因式,再利用平方差公式:分解即可.【详解】原式故答案为:.【点睛】本题考查了利用提取公因式和平方差公式相结合进行因式分解,熟记平方差公式是解题关键.14、【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点,连接交y轴于点C,点C即为使AC+BC最小的点,作轴于E,由勾股定理求出,即可得出结果.【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB=;要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点,连接交y轴于点C,点C即为使AC+BC最小的点,作轴于E,由对称的性质得:AC=,则AC+BC=,=3,OE=1,∴BE=4,由勾股定理得:=,∴△ABC的周长的最小值为.故答案为:.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.15、;【分析】先利用平方差公式对原式进行变形,然后整理成的形式,再开方即可得出答案.【详解】原式变形为即∴∴故答案为:.【点睛】本题主要考查平方差公式和开平方,掌握平方差公式是解题的关键.16、【分析】根据直角三角形内角和定理求出∠BAC,根据角平分线的定义求出∠BAE,结合图形计算即可.【详解】∵∴∵是平分线∴∵是边上的高,∴∴故答案为:.【点睛】本题考查了三角形的角度问题,掌握直角三角形内角和定理和角平分线的定义是解题的关键.17、①④【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a=b=c.进而判断即可.【详解】解:∵a2+b2+c2=ab+bc+ca,

∴2a2+2b2+2c2=2ab+2bc+2ca,

即(a-b)2+(b-c)2+(a-c)2=0,

∴a=b=c,

∴此三角形为等边三角形,同时也是锐角三角形.

故答案是:①④.【点睛】此题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.18、-4【分析】先把拆解成,再进行同指数幂运算即可.【详解】原式=故填:-4.【点睛】本题考查幂的运算:当指数相同的数相乘,指数不变数字相乘.采用简便方法计算是快速计算的关键.三、解答题(共66分)19、甲、乙两种节能灯分别购进40、60只;商场获利1300元.【分析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得

,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利元,答:商场获利1300元.【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.20、(1)证明见解析;(2)见解析.【分析】(1)先根据方式一:①②的面积等于两个正方形的面积之差;方式二:①②的面积等于两个直角梯形的面积之和;然后根据方式一和方式二计算的面积相等即可验证平方差公式;(2)如图(见解析),先根据方式一:①②③④的面积等于两个正方形的面积之差;方式二:①②③④的面积等于四个长方形的面积之和,然后根据方式一和方式二计算的面积相等即可验证平方差公式.【详解】(1)方式一:①②的面积等于两个正方形的面积之差则①②的面积为方式二:①②的面积等于两个直角梯形的面积之和则①②的面积为由方式一和方式二的面积相等可得:;(2)如图,方式一:①②③④的面积等于两个正方形的面积之差则①②③④的面积为方式二:①②③④的面积等于四个长方形的面积之和①②的面积为③④的面积为则①②③④的面积为由方式一和方式二的面积相等可得:.【点睛】本题考查了利用特殊四边形的面积验证平方差公式,掌握理解平方差公式是解题关键.21、(1);(2)3m(x+y)(x-y);【分析】(1)先根据整数指数幂的运算法则计算,再根据有理数的加减运算即可;(2)先提公因式3m,再利用平方差公式因式分解即可.【详解】解:(1)=1+(-2)-=;(2)3mx2-3my2=3m(x2-y2)=3m(x+y)(x-y).【点睛】本题考查了整数指数幂的运算以及因式分解,掌握基本运算法则和公式是解题的关键.22、(1)△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DFA;(2)证明见解析.【分析】(1)利用平行和已知条件可得出△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DFA;(2)可证明△ABE≌△CDF,利用平行可得到∠BAF=∠DCF,且可得出AE=FC,可利用AAS证明.【详解】(1)△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DFA,(2)选△ABE≌△CDF进行证明,证明:∵AB∥CD,∴∠BAE=∠DCF∵AF=CE,∴AF+EF=CE+EF,即AE=CF.在△ABE和△CDF中,∴△ABE≌△CDF(AAS).【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法SSS、SAS、ASA、AAS和HL是解题的关键.23、(1)∠α和∠β的度数分别为55°,125°;(2)见解析;(3)∠C=35°.【分析】(1)根据方程组,可以得到∠α和∠β的度数;

(2)根据(1)∠α和∠β的度数,可以得到AB∥EF,再根据CD∥EF,即可得到AB∥CD;

(3)根据AB∥CD,可得∠BAC+∠C=180°,再根据AC⊥AE和∠α的度数可以得到∠BAC的度数,从而可以得到∠C的度数.【详解】解:(1),①﹣②,得3∠α=165°,解得,∠α=55°,把∠α=55°代入②,得∠β=125°,即∠α和∠β的度数分别为55°,125°;(2)证明:由(1)知,∠α=55°,∠β=125°,则∠α+∠β=180°,故AB∥EF,又∵CD∥EF,∴AB∥CD;(3)∵AB∥CD,∴∠BAC+∠C=180°,∵AC⊥AE,∴∠CAE=90°,又∵∠α=55°,∴∠BAC=145°,∴∠C=35°.【点睛】本题考查平行线的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.24、(1)BC=2;(2)∠BAD=70°【分析】(1)根据作图明确MN是线段AC的垂直平分线,得AD=DC,结合△ABD的周长和AB的长度即可得出BC的长度;(2)根据作图明确MN是线段AC的垂直平分线,得∠C=∠DAC=30°,利用内角和求出∠BAC=100°,进而求出∠BAD=70°.【详解】(1)由图可知MN是AC的垂直平分线∴AD=DC.∵△ABD的周长=AB+AD+BD=1,AB=7∴7+DC+BD=7+BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论