版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市福清市林厝初级中学2023年八上数学期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在如图的方格纸中,每个小正方形的边长均为1,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,若△ABC是等腰三角形,则满足条件的格点C的个数是A.6个 B.7个 C.8个 D.9个2.为迎接我市创建全国文明城市活动,环卫处投资20万元购买并投放一批型“垃圾清扫车”,因为清扫车需求量增加,计划继续投放型清扫车,型清扫车的投放数量与型清扫车的投放数量相同,投资总费用减少,购买型清扫车的单价比购买型清扫车的单价少50元,则型清扫车每辆车的价格是多少元?设型清扫车每辆车的价格为元,根据题意,列方程正确的是()A. B.C. D.3.在平面直角坐标系中,若点P(m+3,-2m)到两坐标轴的距离相等,则m的值为()A.-1 B.3 C.-1或3 D.-1或54.如图,在中,过点作于,则的长是()A. B. C. D.5.已知△A1B1C1与△A2B2C2中,A1B1=A2B2,∠A1=∠A2,则添加下列条件不能判定△A1B1C1≌△A2B2C2的是()A.∠B1=∠B2 B.A1C1=A2C2 C.B1C1=B2C2 D.∠C1=∠C26.如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC.一定成立的是()A.②④ B.②③ C.①③ D.①②7.在xy,,(x+y),这四个有理式中,分式是()A.xy B. C.(x+y) D.8.若点在正比例函数的图象上,则下列各点不在正比例函数的图象上的是()A. B. C. D.9.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A. B. C. D.10.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是11.现用张铁皮做盒子,每张铁皮做个盒身或做个盒底,而一个盒身与两个盒底配成一个盒子,设用张铁皮做盒身,张铁皮做盒底,则可列方程组为()A. B.C. D.12.下列运算正确的是()A. B. C.α8α4=α2 D.二、填空题(每题4分,共24分)13.把一块直尺与一块三角板如图放置,若∠1=44°,则∠2的度数是_____.14.已知x是的整数部分,y是的小数部分,则xy的值_____.15.金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是__________.16.若,则分式的值为____.17.直角三角形的直角边长分别为,,斜边长为,则__________.18.因式分解:________.三、解答题(共78分)19.(8分)在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)20.(8分)如图,的三个顶点的坐标分别是,,.(1)直接写出点、、关于轴对称的点、、的坐标;,,;(2)在图中作出关于轴对称的图形.(3)求的面积.21.(8分)某工厂要把一批产品从地运往地,若通过铁路运输,则每千米需交运费20元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费30元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设地到地的路程为,通过铁路运输和通过公路运输需交总运费元和元.(1)求和关于的函数表达式.(2)若地到地的路程为,哪种运输可以节省总运费?22.(10分)某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示,计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?23.(10分)在边长为1的小正方形网格中,的顶点均在格点上,(1)点关于轴的对称点坐标为;(2)将向左平移3个单位长度得到,请画出,求出的坐标;(3)求出的面积.24.(10分)(1)已知,,求的值.(2)已知,,求和的值.25.(12分)如图,在△ABC中,AB=10,AC=8,BC=6,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________.
26.“文明礼仪”在人们长期生活和交往中逐渐形成,并以风俗、习惯等方式固定下来的.我们作为具有五千年文明史的“礼仪之邦”,更应该用文明的行为举止,合理的礼仪来待人接物.为促进学生弘扬民族文化、展示民族精神,某学校开展“文明礼仪”演讲比赛,八年级(1)班,八年级(2)班各派出5名选手参加比赛,成绩如图所示.(1)根据图,完成表格:平均数(分)中位数(分)极差(分)方差八年级(1)班7525八年级(2)班7570160(2)结合两班选手成绩的平均分和方差,分析两个班级参加比赛选手的成绩;(3)如果在每班参加比赛的选手中分别选出3人参加决赛,从平均分看,你认为哪个班的实力更强一些?说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据等腰三角形的性质,逐个寻找即可.【详解】解:根据等腰三角形的性质,寻找到8个,如图所示,故答案为C.【点睛】此题主要考查等腰三角形的性质,注意不要遗漏.2、C【分析】设B型清扫车每辆车的价格为元,则A型清扫车每辆车的价格为(x+50)元,依据“型清扫车的投放数量与型清扫车的投放数量相同,”列出关于x的方程,即可得到答案.【详解】解:设B型清扫车每辆车的价格为元,则A型清扫车每辆车的价格为(x+50)元,根据题意,得:;故选:C.【点睛】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.3、C【分析】根据到坐标轴的距离相等,分横坐标与纵坐标相等和互为相反数两种情况讨论解答.【详解】解:∵点P(m+3,-2m)到两坐标轴的距离相等∴m+3+(-2m)=0或m+3=-2m解得m=3或m=-1故选:C【点睛】本题考查了点的坐标,难点在于要分两种情况讨论,熟记各象限内点的坐标特征是解题的关键.4、C【分析】由余角性质可知∠BCD=∠A,根据BD=1可以得到CD的长度,进一步得到AD的长度.【详解】由题意,∠BCD和∠A都与∠B互余,∴∠BCD=∠A=∴BC=2BD=2,CD=BD=,AC=2CD=2,AD=CD=×=1.故选C.【点睛】本题考查直角三角形的性质,熟练掌握角的对边、邻边与斜边的关系是解题关键.5、C【分析】根据全等三角形的判定方法一一判断即可.【详解】解:A、根据ASA可以判定两个三角形全等,故A不符合题意;B、根据SAS可以判定两个三角形全等,故B不符合题意.C、SSA不可以判定两个三角形全等,故C符合题意.D、根据AAS可以判定两个三角形全等,故D不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握三角形全等的判定方法.6、A【解析】根据全等三角形的判定和性质得出结论进而判断即可.【详解】∵点E是等腰三角形△ABD底边上的中点,∴BE=DE,∠AEB=∠AED=90°,∴∠BEC=∠DEC=90°.在△BEC与△DEC中,∵,∴△BEC≌△DEC(SAS)∴BC=CD,∠BCE=∠DCE,∴∠ABC=∠ADC,∴④∠ABC=∠ADC;②AC平分∠BCD正确.故选A.【点睛】本题考查了等腰三角形的性质、全等三角形的判定和性质,关键是根据SAS证明△BEC≌△DEC.7、D【分析】根据分式的定义逐项排除即可;【详解】解:A.属于整式中单项式不是分式,不合题意;B.属于整式中的单项式不是分式,不合题意;C.属于整式中的多项式不是分式,不合题意;D.属于分式,符合题意;故答案为D.【点睛】本题考查了分式的定义,牢记分式的分母一定含有字母其π不是字母是解答本题的关键.8、D【分析】先根据点A在正比例函数的图象上,求出正比例函数的解析式,再把各点代入函数解析式验证即可.【详解】解:∵点在正比例函数的图象上,,,故函数解析式为:;A、当时,,故此点在正比例函数图象上;B、当时,,故此点在正比例函数图象上;C、当时,,故此点在正比例函数图象上;D、当时,,故此点不在正比例函数图象上;故选:D.【点睛】本题考查的是正比例函数的图象上点的坐标,要明确图象上点的坐标一定适合此函数的解析式是解答此题的关键.9、A【解析】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得:.故选A.10、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数11、A【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案.【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为.故选:A.【点睛】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.12、D【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A.两项不是同类项,不能合并,错误;B.,错误;C.,错误;D.,正确【点睛】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.二、填空题(每题4分,共24分)13、134°【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【详解】解:∵∠1=44°,∴∠3=90°﹣∠1=90°﹣44°=46°,∴∠4=180°﹣46°=134°,∵直尺的两边互相平行,∴∠2=∠4=134°.故答案为134°.【点睛】本题考查平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,准确识图是解题的关键.14、2﹣1【分析】根据可得,x=2,y=﹣2,代入求解即可.【详解】∵x是的整数部分,∴x=2,∵y是的小数部分,∴y=﹣2,∴yx=2(﹣2)=2﹣1,故答案为2﹣1.【点睛】本题考查了无理数的混合运算问题,掌握无理数大小比较的方法以及无理数混合运算法则是解题的关键.15、3300元【分析】设无人机组有x个同学,航空组有y个同学,根据人数为18列出二元一次方程,根据航空组的同学不少于3人但不超过9人,得到x,y的解,再代入模型费用进行验证即可求解.【详解】设无人机组有x个同学,航空组有y个同学,依题意得x+2x-3+y=18解得x=∵航空组的同学不少于3人但不超过9人,x,y为正整数,故方程的解为,,设为无人机组的每位同学购买a个无人机模型,当时,依题意得6a×165+2×9×75+3×3×98=6114解得a=,不符合题意;当时,依题意得5a×165+2×7×75+6×3×98=6114解得a=4,符合题意,故购买无人机模型的费用是3300元;当时,依题意得4a×165+2×5×75+9×3×98=6114解得a=,不符合题意;综上,答案为3300元.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意列出方程,再分类讨论进行求解.16、-2【分析】根据题意得出m+n=2mn,并对分式进行变形代入进行计算和约分,即可求得分式的值.【详解】解:由,可得m+n=2mn,将变形:,把m+n=2mn,代入得到.故答案为:-2.【点睛】本题考查分式的值,能够通过已知条件得到m+n=2mn,熟练运用整体代入的思想是解题的关键.17、1【分析】根据勾股定理计算即可.【详解】根据勾股定理得:斜边的平方=x2=82+152=1.故答案为:1.【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答本题的关键.18、【分析】根据因式分解的要求是将多项式分解为几个因式相乘的形式进行化简即可,注意要分解到不可分解为止.【详解】,故答案为:.【点睛】本题主要考查了对多项式的因式分解,熟练掌握公式法进行因式分解并确保将式子分解彻底是解决本题的关键.
错因分析较容易题.失分的原因是:1.因式分解不彻底,如;2.混淆平方差公式与完全平方差公式.
三、解答题(共78分)19、(1)见解析;(2)CD=AD+BD,理由见解析;(3)CD=AD+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=AD,∵CD=DE+CE,∴CD=AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=AD,∴DH==AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD=AD+BD,故答案为:CD=AD+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.20、(1);;;(2)图见解析;(3)1【分析】(1)根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论;(2)先分别找到A、B、C关于y轴的对称点,然后连接、、即可;(3)用一个长方形框住△ABC,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)根据关于x轴对称的两点坐标关系:关于x轴的对称点的坐标为;关于x轴的对称点的坐标为;关于x轴的对称点的坐标为.故答案为:;;.(2)先分别找到A、B、C关于y轴的对称点,然后连接、、,如下图所示:即为所求;(3)如上图所示,用一个长方形框住△ABC,由图可知:S△ABC=3×4-=1.【点睛】此题考查的是求关于x轴对称点的坐标、画关于y轴对称的图形和求网格中三角形的面积,掌握关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数、关于y轴对称的图形的画法是解决此题的关键.21、(1),;(2)铁路运输节省总费用【分析】(1)可根据总运费=每千米的运费×路程+装卸费和手续费,来表示出y1、y2关于x的函数关系式;
(2)把路程为120km代入,分别计算y1和y2,比较其大小,然后可判断出哪种运输可以节省总运费.【详解】解:(1)(2)将代入得因为,所以铁路运输节省总费用.【点睛】本题考查了一次函数的应用,一次函数的应用题常出现于销售、收费、行程等实际问题当中,是常用的解答实际问题的数学模型,是中考的常见题型.22、要完成这块绿化工程,预计花费75600元.【分析】设小长方形的长为x米,宽为y米,根据大长方形周长为76米,小长方形宽的5倍等于长的2倍,据此列方程组求解,然后求出面积,最终求得花费.【详解】设小长方形的长为x米,宽为y米,由题意得,,解得:,则大长方形的长为20米,宽为18米,面积为:20×18=360平方米,预计花费为:210×360=75600(元),答:要完成这块绿化工程,预计花费75600元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,根据图形,设出未知数,找出合适的等量关系,列方程组求解.23、(1)点关于轴的对称点坐标为;(2)图详见解析,的坐标为;(3)【分析】(1)关于轴对称的两点横坐标互为相反数,纵坐标相等即得;(2)先找出关键点,再将关键点向左平移3个单位长度并顺次连接即得,最后根据图即得的坐标;(3)将填充成梯形并求出面积,再将梯形面积减去增加部分即得.【详解】解:(1)∵点坐标为(3,2)∴点关于轴的对称点坐标为(,);(2)如图所示,的坐标为(,)(3)如下图作梯形∵∴【点睛】本题考查直角坐标系中图形平移、轴对称的坐标特征及填补法求三角形的面积,解题关键是熟练掌握关于轴对称的两点横坐标互为相反数且纵坐标相等,画平移后的图形先找关键点,填充法求三角形面积.24、(1)3;(2);.【分析】(1)根据幂的乘方将已知等式变形为同底数幂。从而可得与的二元一次方程组,解方程组得出与的值代入即可;(2)根据完全平方公式解答即可.【详解】解:(1)∵,,∴,解得,∴x﹣y=4﹣1=3;(2),,;.【点睛】本题主要考查了幂的乘方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 燃气管道防水施工合作协议
- 环保工程承包管理合同
- 商务住宅租赁协议范本
- 北京温泉度假村租赁协议
- 体育馆内部装修协议
- 2024空调安装服务合同
- 图书馆场地平整施工合同范本
- 河堤加固锚杆施工合同
- 建筑规划甲方与施工方合同范本
- 汽车制造车间建设施工协议
- 学生公寓管理员培训
- 固体废弃物循环利用项目风险管理方案
- 2024年中国电建集团新能源开发有限责任公司招聘笔试参考题库含答案解析
- 《中小学消防安全教育:森林防火》课件模板
- 会计师事务所审计专项方案
- 地方蚕丝被质量整改方案
- 2024年北京社会管理职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 脑出血病人的护理
- 神经外科术后病人健康宣教
- 提升运维工作质量措施
- 小饰品店计划书
评论
0/150
提交评论