北京市丰台区2023年八上数学期末达标检测模拟试题含解析_第1页
北京市丰台区2023年八上数学期末达标检测模拟试题含解析_第2页
北京市丰台区2023年八上数学期末达标检测模拟试题含解析_第3页
北京市丰台区2023年八上数学期末达标检测模拟试题含解析_第4页
北京市丰台区2023年八上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市丰台区2023年八上数学期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.4的算术平方根是()A.±4 B.4 C.±2 D.22.不等式组12x≤1A. B. C. D.3.下列运算正确的是()A.a2·a3=a6 B.(-a2)3=-a5C.a10÷a9=a(a≠0) D.(-bc)4÷(-bc)2=-b2c24.已知5,则分式的值为()A.1 B.5 C. D.5.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形 B.等腰直角三角形C.等腰三角形 D.含30°角的直角三角形6.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.97.若分式的值为正数,则的取值范围是()A. B. C. D.且8.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.5 B.0.8 C. D.9.点A(-3,4)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,在数轴上表示实数的点可能是()A.点 B.点 C.点 D.点11.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+112.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形二、填空题(每题4分,共24分)13.如图,△ABC中,AB=AC=15cm,AB的垂直平分线交AB于D,交AC于E,若BC=8cm,则△EBC的周长为___________cm.14.如图,在平面直角坐标系中,点B,A分别在x轴、y轴上,,在坐标轴上找一点C,使得是等腰三角形,则符合条件的等腰三角形ABC有________个.15.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.16.分式的最简公分母为_____.17.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是__cm.18.按如图的运算程序,请写出一组能使输出结果为3的、的值:__________.三、解答题(共78分)19.(8分)分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和是;(2)将假分式化为一个整式与一个真分式的和;(3)若分式的值为整数,求整数x的值.20.(8分)已知,两地相距,甲骑自行车,乙骑摩托车沿一条笔直的公路由地匀速行驶到地.设行驶时间为,甲、乙离开地的路程分别记为,,它们与的关系如图所示.(1)分别求出线段,所在直线的函数表达式.(2)试求点的坐标,并说明其实际意义.(3)乙在行驶过程中,求两人距离超过时的取值范围.21.(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分)整理,分析过程如下:成绩学生甲014500乙114211(1)两组数据的极差、平均数、中位数、众数、方差如下表所示,请补充完整:学生极差平均数中位数众数方差甲83.78613.21乙2483.78246.21(2)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙”),理由为.22.(10分)计算:14+(3.14)0+÷23.(10分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?24.(10分)如图,已知A(0,4),B(﹣2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1的坐标:A1,B1;(3)若每个小方格的边长为1,求△A1B1C1的面积.25.(12分)如图,直线分别与x轴,y轴相交于A,B两点,0为坐标原点,A点的坐标为(4,0)(1)求k的值;(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,乖足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.26.先化简,再求值:[(2x+y)(2x-y)-3(2x2-xy)+y2]÷(-x),其中x=2,y=-1.

参考答案一、选择题(每题4分,共48分)1、D【分析】如果一个正数x的平方等于a,即x2=a(x>0),那么这个正数x叫做a的算术平方根.【详解】解:4的算术平方根是2.故选D.【点睛】本题考查了算术平方根的定义,熟练掌握相关定义是解题关键.2、C【分析】先求出两个不等式的解集,再求其公共解.【详解】解:由12x≤2得:x≤2.由2-x<3得:x>-2.所以不等式组的解集为-2<x≤2故选C.【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3、C【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方法则进行计算即可.【详解】解:A、a2•a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选:C.【点睛】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.4、A【分析】由5,得x﹣y=﹣5xy,进而代入求值,即可.【详解】∵5,∴5,即x﹣y=﹣5xy,∴原式1,故选:A.【点睛】本题主要考查分式的求值,掌握等式的基本性质以及分式的约分,是解题的关键.5、A【解析】∵这个三角形是轴对称图形,∴一定有两个角相等,∴这是一个等腰三角形.∵有一个内角是60°,∴这个三角形是等边三角形.故选A.6、C【分析】首先根据Rt△ABC的勾股定理得出AB的长度,根据AM=AC得出BM的长度,然后根据BN=BC得出BN的长度,从而根据MN=BN-BM得出答案.【详解】∠ACB=90°,AC=40,CB=9AB===41又AM=AC,BN=BCAM=40,BN=9BM=AB-AM=41-40=1MN=BN-BM=9-1=8故选C考点:勾股定理7、D【分析】若的值是正数,只有在分子分母同号下才能成立,即x+4>1,且x≠1,因而能求出x的取值范围.【详解】∵x≠1,∴.∵1,∴x+4>1,x≠1,∴x>﹣4且x≠1.故选:D.【点睛】本题考查了分式值的正负性问题,若对于分式(b≠1)>1时,说明分子分母同号;分式(b≠1)<1时,分子分母异号,注意此题中的x≠1.8、C【分析】连接AD,由勾股定理求出DE,即可得出CD的长.【详解】解:如图,连接AD,则AD=AB=3,

由勾股定理可得,Rt△ADE中,DE=,

又∵CE=3,

∴CD=3-,

故选:C.【点睛】本题考查了勾股定理的运用,由勾股定理求出DE是解决问题的关键.9、B【解析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.

故选:B.【点睛】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、C【分析】先针对进行估算,再确定是在哪两个相邻的整数之间,然后进一步得出答案即可.【详解】∵,∴,即:,∴在3与4之间,故数轴上的点为点M,故选:C.【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.11、B【详解】试题解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合题意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C.x2-2x=x(x-2),含有因式(x-2),不符合题意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.12、B【解析】试题解析:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.二、填空题(每题4分,共24分)13、1【分析】根据线段垂直平分线的性质得出AE=BE,求出△EBC的周长=BC+BE+EC=BC+AC,代入求出即可.【详解】解:∵DE是AB的垂直平分线,∴AE=BE,∵AB=AC=15cm,BC=8cm,∴△EBC的周长=BC+BE+EC=BC+AE+CE=BC+AC=8+15=1cm.故答案为:1.【点睛】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.14、1【分析】根据等腰三角形的定义、圆的性质(同圆的半径相等)分情况讨论即可得.【详解】设点A坐标为,则依题意,有以下三种情况:(1)当时,是等腰三角形如图1,以点B为圆心、BA为半径画圆,除点A外,与坐标轴有三个交点由圆的性质可知,三点均满足要求,且是等边三角形(2)当时,是等腰三角形如图2,以点A为圆心、AB为半径画圆,除点B外,与坐标轴有三个交点由圆的性质可知,三点均满足要求,且是等边三角形(3)当时,是等腰三角形如图3,作的角平分线,交x轴于点则,是等腰三角形,即点满足要求由勾股定理得,则点坐标为作,交y轴于点则,是等边三角形,即点满足要求坐标为综上,符合条件的点共有1个:(其中为同一点)即符合条件的等腰三角形有1个故答案为:1.【点睛】本题考查了等腰三角形的定义、圆的性质,依据等腰三角形的定义,正确分3种情况讨论是解题关键.15、SSS【解析】试题分析:根据作图得出AB=AD,CD=CB,根据全等三角形的判定得出即可.解:由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),故答案为SSS.考点:全等三角形的判定.16、10xy2【解析】试题解析:分母分别是故最简公分母是故答案是:点睛:确定最简公分母的方法是:

(1)取各分母系数的最小公倍数;

(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;

(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.17、1【解析】根据题意,过A点和B点的平面展开图分三种情况,再根据两点之间线段最短和勾股定理可以分别求得三种情况下的最短路线,然后比较大小,即可得到A点到B点的最短路线,本题得以解决.【详解】解:由题意可得,

当展开前面和右面时,最短路线长是:当展开前面和上面时,最短路线长是:当展开左面和上面时,最短路线长是:∴一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是1cm,

故答案为:1.【点睛】本题主要考查的就是长方体的展开图和勾股定理的实际应用问题.解决这个问题的关键就是如何将长方体进行展开.在解答这种问题的时候我们需要根据不同的方式来对长方体进行展开,然后根据两点之间线段最短的性质通过勾股定理来求出距离.有的题目是在圆锥中求最短距离,我们也需要将圆锥进行展开得出扇形,然后根据三角形的性质进行求值.18、,.【分析】根据运算程序列出方程,取方程的一组正整数解即可.【详解】根据题意得:,当时,.故答案为:,.【点睛】此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.三、解答题(共78分)19、(1)1+;(2)2﹣;(3)x=﹣2或1.【分析】逆用同分母分式加减法法则,仿照题例做(1)(2);(3)先把分式化为真分式,根据值为整数,x的值为整数确定x的值.【详解】解:(1)==故答案为:(2)==﹣=2﹣;(3)===x﹣1+,∵分式的值为整数,且x为整数,∴x+1=±1,∴x=﹣2或1.【点睛】本题考查了真分式及分式的加减法.理解题例和题目给出的定义是解决问题的关键.20、(1)所在直线的函数表达式,线段所在直线的函数表达式;(2)F的坐标为(1.5,60),甲出发1.5小时后,乙骑摩托车到达乙地;(3)或【分析】(1)利用待定系数法求出线段OD的函数表达式,进而求出点C的坐标,再利用待定系数法求出线段EF所在直线的函数表达式;(2)根据线段EF所在直线的函数表达式求出F的坐标,即可说明其实际意义;(3)根据两条线段的函数表达式列不等式解答即可.【详解】解:(1)设线段所在直线的函数表达式,将,代入,得,∴线段所在直线的函数表达式,把代入,得,∴点的坐标为,设线段所在直线的函数表达式,将,代入,得,解得:,∴线段所在直线的函数表达式;(2)把代入,得,∴的坐标为,实际意义:甲出发1.5小时后,乙骑摩托车到达乙地;(3)由题意可得,或者,当时,,解得,又∵是在乙在行驶过程中,∴当时,,∴,∴,当时,,解得,又∵是在乙在行驶过程中,∴当时,,∴,∴,综上所述,乙在行驶过程中,两人距离超过时的取值范围是:或.【点睛】本题考查了待定系数法求一次函数解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.21、(1)14,84.5,81;(2)甲,理由:甲乙平均数一样,甲同学成绩的方差小于乙同学成绩的方差,则甲同学成绩更稳定,故选甲【分析】(1)依据极差、中位数和众数的定义进行计算即可;(2)依据平均数和方差的角度分析,即可得到哪个学生的水平较高.【详解】(1)甲组数据的极差=89-75=14,甲组数据排序后,最中间的两个数据为:84和85,故中位数=(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数为81;故答案为:14,84.5,81;(2)甲,乙两位同学的平均数相同,甲同学成绩的方差小于乙同学成绩的方差,则甲同学成绩更稳定,故选甲.【点睛】本题主要考查了统计表,众数,中位数以及方差的综合运用,熟练掌握众数,中位数以及方差知识是解决本题的关键.22、0【分析】首先计算乘方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【详解】原式=1+21+=0【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.23、(1)试销时该品种苹果的进货价是每千克5元;(2)商场在两次苹

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论