高考数学复习 第十一讲 立体几何之空间距离及历年高考数学易错点汇总_第1页
高考数学复习 第十一讲 立体几何之空间距离及历年高考数学易错点汇总_第2页
高考数学复习 第十一讲 立体几何之空间距离及历年高考数学易错点汇总_第3页
高考数学复习 第十一讲 立体几何之空间距离及历年高考数学易错点汇总_第4页
高考数学复习 第十一讲 立体几何之空间距离及历年高考数学易错点汇总_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十一讲立体几何之空间距离一、空间距离包括:点与点、点与线、点与面、线与线(异面直线)、线与面(线面平行)、面与面(面面平行)的距离。要理解各个距离的概念。二、空间距离的求法重点掌握:线线距离、点面距离、尤其点面距离线线距离:找公垂线段点面距离=1\*GB3①直接法(过点向面作作垂线段,即求公垂线段长度)=2\*GB3②等体积法(三棱锥)=3\*GB3③向量法:设平面的法向量为,P为平面外一点,Q是平面内任一点,则点P到平面的距离为d等于在法向量上的投影绝对值。三、例题讲解1、下列命题中:=1\*GB3①所在的平面,则P、B间的距离等于P到BC的距离;=2\*GB3②若则a与b的距离等于a与的距离;=3\*GB3③直线a、b是异面直线,则a、b之间的距离等于b与的距离=4\*GB3④直线a、b是异面直线,则a、b之间的距离等于间的距离其中正确的命题个数有(C)A.1个B.2个C.3个D.4个2、如图所示,正方形的棱长为1,C、D为两条棱的中点,A、B、M是顶点,那么点M到截面ABCD的距离是____________。解析:取AB、CD中点P、Q,易证中,PQ边长的高MH为所求,3、在底面是正方形的四棱锥A-BCDE中,且AE=CD=a,G、H是BE、ED的中点,则GH到面ABD的距离是____________。解析:连结EC,交BD于O,且交GH于,则有平面。过E作于K,则所求距离等于4、如图,在棱长为a的正方体中,E、F分别为棱AB和BC的中点,G为上底面的中心,则点D到平面的距离___________。解:方法1:建立如图直角坐标系,则设平面的法向量为取,则可取又到平面的距离方法2:等体积法设D到平面的距离为h是等腰三角形,取EF中点H,连结可得即D到平面的距离为。5、如图所示,将等腰直角三角形ABC沿斜边AB上的高CD为棱折成一个的二面角,使B到的位置,已知AB=2,求(1)顶点C到平面的距离(2)顶点A到平面的距离(3)CD和的之间的距离分析:有关立体几何中的翻折问题,主要判断翻折前后各种量的变化与否。解析:(1)由已知得,即在翻折前后它们的位置关系不变,,则C点到平面的距离就是CD的长,为等腰三角形,AB=2,(2)如图所示,过A作于E,连结CE故AE的长为A点到平面的距离为平面ACD与平面所成二面角的平面角即(3)如图二,平面中,过D作,交AB于F点为异面直线CD和的距离由得6、(06海淀模拟)如图所示,在直三棱柱中D、E分别为棱中点求点B到平面的距离求二面角的大小在线段AC上是否存在一点F,使?若存在,确定其位置并证明结论,若不存在,说明理由。解析:(1)为直三棱柱长度即为B点到平面的距离点B到平面的距离为2。(2)是直三棱柱D、E分别为棱中点建立如图直角坐标系设平面的法向量为平面的法向量为即二面角的大小为。(3)在线段AC上存在一点F,设使得欲使由(2)知当且仅当存在唯一一点满足条件即点F为AC的中点7、(06年福建)如图所示,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=。求证:求异面直线AB与CD所成角的大小求点E到平面ACD的距离解析:方法1(1)连结OC在中,由已知可得而AC=2(2)取AC中点M,连结OM,ME,OE,由于E为BC的中点知ME//AB,OE//DC直线OE与EM所成的锐角就是异面直线AB与CD所成的角在中,是直角三角形AOC斜边AC上的中线异面直线AB与CD所成角的大小为。(3)设点E到平面ACD的距离为h在中,而点E到平面ACD的距离为。方法2:(1)同方法1(2)以O为原点,如图四所示建立空间直角坐标系,则异面直线AB与CD所成角的大小为。(3)设平面ACD的法向量则令得是平面ACD是一个法向量又点E到平面ACD的距离为。高考数学复习方法:历年高考数学易错点汇总数学是一座高山,哪怕是高考数学这样的小山丘,也让无数学子望其背而心戚戚,更有人混淆知识点,在里面兜兜转转浪费了精力和时间,满纸推算却只能挣得卷面分,看得自己也是好一阵心疼啊,搬出高考数学易错知识点总结,希望能让大家少走一点弯路。

集合与简单逻辑

1易错点:遗忘空集致误

错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2易错点:忽视集合元素的三性致误

错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

3易错点:四种命题的结构不明致误

错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

4易错点:充分必要条件颠倒致误

错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

5易错点:逻辑联结词理解不准致误

错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:

p∨q真<=>p真或q真,

p∨q假<=>p假且q假(概括为一真即真);

p∧q真<=>p真且q真,

p∧q假<=>p假或q假(概括为一假即假);

┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

函数与导数

6易错点:求函数定义域忽视细节致误

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:

(1)分母不为0;

(2)偶次被开放式非负;

(3)真数大于0;

(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

7易错点:带有绝对值的函数单调性判断错误

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;

二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

8易错点:求函数奇偶性的常见错误

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

9易错点:抽象函数中推理不严密致误

错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。

解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。

抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

10易错点:函数零点定理使用不当致误

错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。

函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。

11易错点:混淆两类切线致误

错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。

12易错点:混淆导数与单调性的关系致误

错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。

研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

13易错点:导数与极值关系不清致误

错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。

出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。

数列

14易错点:用错基本公式致误

错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

15易错点:an,Sn关系不清致误

错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:∵Sn=a1+a2+⋅⋅⋅+an-1+an,①

∴当n=1时,a1=S1.

当n≥2时,Sn-1=+a2+⋅⋅⋅+an-1,②

∴①-②得Sn−Sn−1=a

n,

即an=Sn-Sn-1,n≥2.

故数列{an}的通项an与前n项和Sn之间的关系为an=S1,n=1Sn−Sn−1,n≥2

这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。

16易错点:对等差、等比数列的性质理解错误

错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。

一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。

解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。

17易错点:数列中的最值错误

错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。

但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论