版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年内蒙古中学九年级数学第一学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列事件中,是必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数为偶数B.三角形的内角和等于180°C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”2.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为()A.3 B.﹣3 C.13 D.﹣133.将抛物线向右平移2个单位,则所得抛物线的表达式为()A. B.C. D.4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子.在点钉在一起.并使它们保持垂直,在测直径时,把点靠在圆周上.读得刻度个单位,个单位,则圆的直径为()A.12个单位 B.10个单位 C.11个单位 D.13个单位5.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.6.中,,,,的值为()A. B. C. D.27.抛物线与坐标轴的交点个数为()A.0 B.1 C.2 D.38.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于A.100° B.80° C.50° D.40°9.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x,根据题意列方程为()A. B.C. D.10.已知,是方程的两个实数根,则的值是()A.2023 B.2021 C.2020 D.2019二、填空题(每小题3分,共24分)11.如图,已知圆锥的底面半径为3,高为4,则该圆锥的侧面积为______.12.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________.13.已知线段a=4cm,b=9cm,则线段a,b的比例中项为_________cm.14.如图,四边形ABCD是⊙O的外切四边形,且AB=5,CD=6,则四边形ABCD的周长为_______.15.如图,已知是直角,在射线上取一点为圆心、为半径画圆,射线绕点顺时针旋转__________度时与圆第一次相切.16.将一块三角板和半圆形量角器按图中方式叠放,点、在三角板上所对应的刻度分别是、,重叠阴影部分的量角器弧所对的扇形圆心角,若用该扇形围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为______.17.将二次函数y=-2(x-1)2+3的图象关于原点作对称变换,则对称后得到的二次函数的解析式为____________.18.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点坐标为(m,0).若2<m<5,则a的取值范围是_____.三、解答题(共66分)19.(10分)如图,已知四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线.20.(6分)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.21.(6分)如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=1.(1)求BF的长;(2)求⊙O的半径r.22.(8分)如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC于点D,交AB于点G,过D作DE⊥AC,垂足为E.(1)DE与⊙O有什么位置关系,请写出你的结论并证明;(2)若⊙O的半径长为3,AF=4,求CE的长.23.(8分)化简求值:,其中.24.(8分)如图,要设计一幅宽为20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为504cm2,彩条的宽应是多少cm.25.(10分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,连结AC、OC、BC.求证:∠ACO=∠BCD.26.(10分)如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)计算线段AB的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据事件发生的可能性大小判断相应事件的类型.【详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B.本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【分析】
【详解】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1+x2=﹣4,x1x2=a.∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+1=0,解得,a=﹣1.故选B3、D【分析】根据“左加右减,上加下减”的规律直接求得.【详解】因为抛物线y=3x2−1向右平移2个单位,得:y=3(x−2)2−1,故所得抛物线的表达式为y=3(x−2)2−1.故选:D.本题考查平移的规律,解题的关键是掌握抛物线平移的规律.4、B【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.判断EF即为直径,然后根据勾股定理计算即可.【详解】解:连接EF,
∵OE⊥OF,
∴EF是圆的直径,.故选:B.本题考查圆周角的性质定理,勾股定理.掌握“90°的圆周角所对的弦是直径”定理的应用是解决此题的关键.5、C【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6、C【分析】根据勾股定理求出斜边AB的值,在利用余弦的定义直接计算即可.【详解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=,∴==,故选:C.本题主要考查锐角三角函数的定义,解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数是定义.7、C【分析】先计算自变量为0对应的函数值得到抛物线与轴的交点坐标,再解方程得抛物线与轴的交点坐标,从而可对各选项进行判断.【详解】当时,,则抛物线与轴的交点坐标为,当时,,解得,抛物线与轴的交点坐标为,所以抛物线与坐标轴有2个交点.故选C.本题考查了抛物线与轴的交点:把求二次函数是常数,与轴的交点坐标问题转化为解关于的一元二次方程.8、D【解析】试题分析:∵∠ACB和∠AOB是⊙O中同弧所对的圆周角和圆心角,且∠AOB=80°,∴∠ACB=∠AOB=40°.故选D.9、D【分析】根据“每年的人均收入上一年的人均收入(1年增长率)”即可得.【详解】由题意得:2018年的人均收入为元2019年的人均收入为元则故选:D.本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键.10、A【分析】根据题意可知b=3-b2,a+b=-1,ab=-3,所求式子化为a2-b+2019=a2-3+b2+2019=(a+b)2-2ab+2016即可求解.【详解】,是方程的两个实数根,∴,,,∴;故选A.本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据圆锥的底面半径为3,高为4可得圆锥的母线长,根据圆锥的侧面积S=即可得答案.【详解】∵圆锥的底面半径为3,高为4,∴圆锥的母线长为=5,∴该圆锥的侧面积为:π×3×5=15π,故答案为:15π本题考查求圆锥的侧面积,如果圆锥的底面半径为r,母线长为l,则圆锥的侧面积S=;熟练掌握圆锥的侧面积公式是解题关键.12、【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,
故从中任取一个数,则恰为奇数的概率是
,
故答案为:.本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.13、6【分析】设比例中项为c,得到关于c的方程即可解答.【详解】设比例中项为c,由题意得:,∴,∴c1=6,c2=-6(不合题意,舍去)故填6.此题考查线段成比例,理解比例中项的含义即可正确解答.14、1【分析】根据圆外切四边形的对边之和相等求出AD+BC,根据四边形的周长公式计算即可.【详解】解:∵四边形ABCD是⊙O的外切四边形,∴AE=AH,DH=DG,CG=CF,BE=BF,∵AB=AE+EB=5,CD=DG+CG=6,AH+DH+BF+CF=AE+DG+BE+CG,
即AD+BC=AB+CD=11,
∴四边形ABCD的周长=AD+BC+AB+CD=1,
故答案为:1.本题考查的是切线长定理,掌握圆外切四边形的对边之和相等是解题的关键.15、60【分析】根据题意,画出旋转过程中,与圆相切时的切线BA1,切点为D,连接OD,根据切线的性质可得∠ODB=90°,然后根据已知条件,即可得出∠OBD=30°,从而求出旋转角∠ABA1.【详解】解:如下图所示,射线BA1为射线与圆第一次相切时的切线,切点为D,连接OD∴∠ODB=90°根据题意可知:∴∠OBD=30°∴旋转角:∠ABA1=∠ABC-∠OBD=60°故答案为:60此题考查的是切线的性质和旋转角,掌握切线的性质是解决此题的关键.16、1【分析】先利用弧长公式求出弧长,再利用弧长等于圆锥的底面周长求半径即可.【详解】根据题意有扇形的半径为6cm,圆心角∴设圆锥底面半径为r∴故答案为:1.本题主要考查圆锥底面半径,掌握弧长公式是解题的关键.17、y=2(x+1)2-3【分析】根据关于原点对称点的特点,可得答案.【详解】解:y=−2(x−1)2+3的顶点坐标为(1,3),故变换后的抛物线为y=2(x+1)2−3,故答案为y=2(x+1)2−3本题考查了二次函数图象与几何变换,抛物线关于原点对称变换后只是开口方向改变,顶点关于原点对称,而开口大小并没有改变.18、<a或﹣5<a<﹣1.【分析】首先可由二次函数的表达式求得二次函数图象与x轴的交点坐标,可知交点坐标是由a表示的,再根据题中给出的交点横坐标的取值范围可以求出a的取值范围.【详解】解:∵y=ax1+(a1﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x=﹣a或x=,∴抛物线与x轴的交点为(﹣a,0),(,0),由题意函数与x轴的一个交点坐标为(m,0)且1<m<5,∴当a>0时,1<<5,即<a;当a<0时,1<﹣a<5,即﹣5<a<﹣1;故答案为<a或﹣5<a<﹣1.本题综合考查二次函数图象与与x轴的交点坐标以及一元一次不等式的解法,熟练掌握二次函数图象与坐标轴交点坐标的求法以及一元一次不等式的解法是解题关键.三、解答题(共66分)19、(1)详见解析;(2)详见解析【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;
(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;【详解】(1)如图,连接OD,
∵CD是⊙O的切线,
∴OD⊥CD,
∴∠2+∠3=∠1+∠COD=90°,
∵DE=EC,
∴∠1=∠2,
∴∠3=∠COD,
∴DE=OE;
(2)∵OD=OE,
∴OD=DE=OE,
∴∠3=∠COD=∠DEO=60°,
∴∠2=∠1=30°,
∵AB∥CD,
∴∠4=∠1,
∴∠1=∠2=∠4=∠OBA=30°,
∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),
∴∠CBO=∠CDO=90°,
∴OB⊥BC,
∴BC是⊙O的切线;此题主要考查了切线的判定和性质,同角的余角相等,等腰三角形的性质,判断出△CDO≌△CBO是解本题的关键.20、(1)C(-2,2);(2)证明见解析.【解析】试题分析:(1)Rt△OBP中,由勾股定理得到OP的长,连接AC,因为BC是直径,所以∠BAC=90°,因为OP是△ABC的中位线,所以OA=2,AC=2,即可求解;(2)由点C的坐标可得直线CD的解析式,则可求点D的坐标,从而可用SAS证△DAC≌△POB,进而证∠ACB=90°.试题解析:(1)解:如图,连接CA.∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,∴OP2=5-4=1,OP=1.∵BC是⊙P的直径,∴∠CAB=90°.∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).(2)证明:∵直线y=2x+b过C点,∴b=6.∴y=2x+6.∵当y=0时,x=-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切线.21、(1)BF=3;(2)r=2.【分析】(1)设BF=BD=x,利用切线长定理,构建方程解决问题即可.(2)证明四边形OECF是矩形,推出OE=CF即可解决问题.【详解】解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=1,∴AC===5,∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,∴BD=BF,AD=AE,CF=CE,设BF=BD=x,则AD=AE=13﹣x,CFCE=1﹣x,∵AE+EC=5,∴13﹣x+1﹣x=5,∴x=3,∴BF=3.(2)连接OE,OF,∵OE⊥AC,OF⊥BC,∴∠OEC=∠C=∠OFC=90°,∴四边形OECF是矩形,∴OE=CF=BC﹣BF=1﹣3=2.即r=2.本题考查三角形的内心,勾股定理,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)DE与⊙O相切,证明见解析;(2)CE长度为1【分析】(1)连接OD,如图,根据等腰三角形的性质和等量代换可得∠ODB=∠C,进而可得OD∥AC,于是可得OD⊥DE,进一步即可得出结论;(2)连接OF,由切线的性质和已知条件易得四边形ODEF为矩形,从而可得EF=OD=3,在Rt△AOF中根据勾股定理可求出AO的长,进而可得AB的长,即为AC的长,再利用线段的和差即可求出结果.【详解】解:(1)DE与⊙O相切;理由如下:连接OD,如图,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE与⊙O相切;(2)如图,连接OF;∵DE,AF是⊙O的切线,∴OF⊥AC,OD⊥DE,又∵DE⊥AC,∴四边形ODEF为矩形,∴EF=OD=3,在Rt△OFA中,∵AO2=OF2+AF2,∴,∴AC=AB=AO+BO=8,CE=AC﹣AF﹣EF=8﹣4﹣3=1.答:CE长度为1.本题考查了圆的切线的判定和性质、矩形的判定和性质、等腰三角形的性质以及勾股定理等知识,属于常考题型,正确添加辅助线、熟练掌握上述知识是解题的关键.23、,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学数学核心素养培养的方法与案例分析
- 2025年度锅炉供暖系统节能改造合同2篇
- 2025年度科学研究与开发合同5篇
- 家庭医疗费用合理化规划
- 2024离婚协议书去哪补充
- 2025土地开发商品房借款合同范本
- 2025年度模特肖像权保护拍摄保密合同全文版5篇
- 2024木材在线交易合同范本及执行细则3篇
- 二零二五年度跨行业股票投资委托合同样本3篇
- 2025关于图书约稿的合同样本
- 《中国血脂管理指南》考试复习题库(含答案)
- 人教版道德与法治八年级上册2.1网络改变世界课件
- 外研版小学英语(三起点)六年级上册期末测试题及答案(共3套)
- 中医诊疗规范
- 工业互联网平台 安全生产数字化管理 第2部分:石化化工行业 编制说明
- 第14课《叶圣陶先生二三事》导学案 统编版语文七年级下册
- 成人手术后疼痛评估与护理-中华护理学会团体标准2023 2
- DB15-T 3585-2024 高标准农田施工质量评定规程
- 北师大版八年级上册数学期中综合测试卷(含答案解析)
- 天津滨海新区2025届数学七年级第一学期期末学业质量监测模拟试题含解析
- 2024年浙江省台州市仙居县中考二模科学试卷
评论
0/150
提交评论