版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏银川2023-2024高三上学期第二次月考理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,集合,,则A. B. C. D.2.“”是“”的A.充分且不必要条件 B.必要且不充分条件C.充要条件 D.既不充分又不必要条件3.已知偶函数在区间上单调递减,,若,则的取值范围是A. B. C. D.4.意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是A.B.C.D.5.已知函数,若存在,使,则实数的取值范围是A.B.C.D.6.已知是奇函数,则A.2 B. C.1 D.-27.若,则α不可能是A. B. C. D.8.若函数在单调递增,则的取值范围是A.B.C.D.9.设函数在区间恰有3个极值点,2个零点,则的取值范围是A. B. C. D.10.设,,则的大小关系为A. B.C. D.11.已知函数(,),其图像与直线相邻两个交点的距离为,若对于任意的恒成立,则的取值范围是A.B.C.D.12.若存在,使得关于的不等式成立,则实数的最小值为A.2 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.____________.14.已知角的顶点为原点,始边为轴的非负半轴,若其终边经过点,则___________.15.随着国家“双碳”(碳达峰与碳中和的简称)目标的提出,我国风电发展驶入快车道,陆地、海上的风机(如下左图,顶端外形是大风车,又称风力发电大风车)纷纷“拔地而起”,成为保护环境、输送绿色能源的“风中使者”.如图,一学习兴趣小组为了测量某风力发电大风车AB的高度,在点A正东方点C处测得风车顶端点B的仰角为30°,在点A南偏西30°方向的点D处测得点B的仰角为60°,且C,D相距米,其中平面ADC,则AB的高度为米.16.已知过点可作两条不同的直线与曲线相切,则实数的取值范围是__________.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.必考题:共60分.17.(12分)已知函数.(1)求的最小正周期和单调递增区间;(2)若关于的方程在上有解,求实数的取值范围.18.(12分)经过市场调研发现,某公司生产的某种时令商品在未来一个月(30天)内的日销售量(百件)与时间第天的关系如下表所示:第天1310…30日销售量(百件)23…未来30天内,受市场因素影响,前15天此商品每天每件的利润(元)与时间第天的函数关系式为且为整数,而后15天此商品每天每件的利润(元)与时间第天的函数关系式为(,且为整数).(1)现给出以下两类函数模型:①(为常数);②为常数,且.分析表格中的数据,请说明哪类函数模型更合适,并求出该函数解析式;(2)若这30天内该公司此商品的日销售利润始终不能超过4万元,则考虑转型.请判断该公司是否需要转型?并说明理由.19.(12分)已知函数,.(1)讨论函数的单调性;(2)证明:当时,,使得.20.(12分)在△ABC中,角,,的对边分别为,,,若.(1)求角的大小;(2)若为上一点,,,求的最小值.21.(12分)已知函数,为的导数.(1)证明:在区间上存在唯一极大值点;(2)求函数的零点个数.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)如图,在极坐标系中,圆的半径为,半径均为的两个半圆弧所在圆的圆心分别为,,是半圆弧上的一个动点,是半圆弧上的一个动点.(1)若,求点的极坐标;(2)若点是射线与圆的交点,求面积的取值范围.23.[选修4-5:不等式选讲](10分)已知,求证:(1);(2).
高三第二次月考数学(理科)参考答案一、选择题:题号123456789101112答案CADCAABDCDCD二、填空题13.114.15.4016.三、解答题17.【答案】(1),单调递增区间为.(2).(1)整理函数的解析式可得,据此可得函数的最小正周期,单调递增区间为.(2)由题意可得,结合(1)中的函数解析式可知的值域为.而,故.试题解析:(1),最小正周期,函数的单调递增区间满足:,解得的单调递增区间为.(2),所以,,所以的值域为.而,所以,即.18.【答案】(1)选择函数模型①,其解析式为(且为整数)(2)这30天内日利润均未能超过4万元,该公司需要考虑转型,理由见解析【分析】(1)将将以及分别代入对应的函数模型,求得对应的函数解析式,再代入计算判断是否满足即可;(2)记日销售利润为,根据一次函数与二次函数的单调性分析的最大值,判断与4万元的大小关系判断即可【详解】(1)若选择模型(1),将以及代入可得解得,即,经验证,符合题意;若选择模型(2),将以及代入可得,解得,即,当时,,故此函数模型不符题意,因此选择函数模型(1),其解析式为(且为整数)(2)记日销售利润为,当且为整数时,,对称轴,故当时,利润取得最大值,且最大值为392(百元)当且为整数时,,当时,利润单调递减,故当时取得最大值,且最大值为(百元)所以,这30天内日利润均未能超过4万元,该公司需要考虑转型.19.【分析】(1)求出函数的定义域及导数,再分类讨论求解单调区间作答.(2)由(1)求出函数在的最大值,结合题意构造函数,利用导数推理作答.【详解】(1)函数的定义域为,求导得,,当时,恒有,函数在上单调递减;当时,由,得或,单调递减,由,得,单调递增;当时,由,得或,单调递减,由,得,单调递增;所以当时,函数在上单调递减,在上单调递增;当时,函数在上单调递减;当时,函数在上单调递减,在上单调递增.(2)由(1)知,当时,函数在上单调递增,在上单调递减,则当时,取得最大值,于是当时,,使得成立,当且仅当时,成立,即当时,成立,令函数,求导得,令,求导得,于是函数单调递增,即在上单调递增,,因此函数在上单调递增,,即当时,成立,所以当时,,使得.20.【答案】(1)(2)【分析】(1)利用正弦定理化简已知条件,结合余弦定理求得正确答案.(2)利用三角形的面积公式列方程,结合基本不等式求得的最小值.【详解】(1)依题意,,由正弦定理得,,所以,所以是钝角,所以.(2),,所以,即,所以,当且仅当时等号成立.21.【答案】(1)证明见解析(2)2【详解】(1)由题意知,函数的定义域为,且,令,,所以,,令,,则,当时,,所以,即在上单调递减,又,,,则存在,使得,即存在,使得,所以当时,,当时,,所以为的唯一极大值点,故在区间上存在唯一极大值点;(2)由(1)知,,,①当时,由(1)知,在上单调递增,在上单调递减,又,,,所以存在,使得,所以当,时,,单调递减,当时,,单调递增,又,,所以当时,有唯一的零点;②当时,,单调递减,又,所以存在,使得;③当时,,所以,则在没有零点;综上所述,有且仅有2个零点.22.【详解】(1)由知:,,...................2分
点的极角为,点的极坐标为....................5分(2)
由题意知:,,,,.................7分,,,..........10分23【详解】(1)因为,所以,即,..........
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44785-2024电子营业执照数据规范
- GB/T 34430.5-2024船舶与海上技术保护涂层和检查方法第5部分:涂层破损的评估方法
- 《普通物理实验2》课程教学大纲
- 2024年出售杀鸡厂屠宰场合同范本
- 2024年代理记账合同范本可修改
- 江苏省无锡市江阴市六校2024-2025学年高一上学期11月期中联考试题 生物(含答案)
- 爱国敬业团课课件
- 2024至2030年中国挺柔西服行业投资前景及策略咨询研究报告
- 2024至2030年中国防爆蓄电池式电机车数据监测研究报告
- 2024年营养液用输液器项目评估分析报告
- SMT电子物料损耗率标准 贴片物料损耗标准
- 王阳明心学课件
- 马克思主义基本原理概论(湖南师范大学)智慧树知到答案章节测试2023年
- 环境影响评价智慧树知到答案章节测试2023年桂林电子科技大学
- 2023年江苏小高考历史试卷含答案1
- 2022年全国统一高考日语真题试卷及答案
- GB/T 3280-2015不锈钢冷轧钢板和钢带
- GB/T 28655-2012业氟化氢铵
- 氧气(MSDS)安全技术说明书
- 第一章膳食调查与评价
- GB 5606.3-2005卷烟第3部分:包装、卷制技术要求及贮运
评论
0/150
提交评论