2024届浙江省台州市三门县八年级数学第一学期期末考试试题含解析_第1页
2024届浙江省台州市三门县八年级数学第一学期期末考试试题含解析_第2页
2024届浙江省台州市三门县八年级数学第一学期期末考试试题含解析_第3页
2024届浙江省台州市三门县八年级数学第一学期期末考试试题含解析_第4页
2024届浙江省台州市三门县八年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省台州市三门县八年级数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.两图形重合2.要使分式有意义,则的取值应满足()A. B. C. D.3.若分式有意义,则a的取值范围是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数4.函数y=5﹣2x,y的值随x值的增大而()A.增大 B.减小C.不变 D.先增大后减小5.下列命题:①如果,那么;②有公共顶点的两个角是对顶角;③两直线平行,同旁内角互补;④平行于同一条直线的两条直线平行.其中是真命题的个数有()A.1 B.2 C.3 D.46.如图□的对角线交于点,,,则的度数为()A.50° B.40° C.30° D.20°7.将分式中的的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定8.近似数0.13是精确到()A.十分位 B.百分位 C.千分位 D.百位9.若分式有意义,则实数的取值范围是()A. B. C. D.10.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC11.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则拼成长方形的面积是()A. B.C.m D.12.如果是关于xy的二元一次方程mx﹣10=3y的一个解,则m的值为()A. B. C.﹣3 D.﹣2二、填空题(每题4分,共24分)13.直角三角形的直角边长分别为,,斜边长为,则__________.14.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,外角∠1,∠2,∠3,∠4的和等于220°,则∠BOD的度数是_____度.15.观察探索:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1根据规律填空:(x﹣1)(xn+xn﹣1+…+x+1)=__.(n为正整数)16.已知,其中为正整数,则__________.17.如图,在中,垂直平分交于点,若,,则_________________.18.如图,△ABC≌△DEC,其中AB与DE是对应边,AC与DC是对应边,若∠A=∠30°,∠CEB=70°,则∠ACD=_____°.三、解答题(共78分)19.(8分)分解因式:4ab2﹣4a2b﹣b1.20.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.21.(8分)把两个含有角的直角三角板和如图放置,点在同一直线上,点在上,连接,,的延长线交于点.猜想与有怎样的关系?并说明理由.22.(10分)如图,平面直角坐标系中,.(1)作出关于轴的对称图形;作出向右平移六个单位长度的图形;(2)和关于直线对称,画出直线.(3)为内一点,写出图形变换后的坐标;(4)求的面积23.(10分)在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.24.(10分)如图在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.25.(12分)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?26.请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】在坐标系中,点的坐标关于y轴对称则纵坐标不变,横坐标变为原坐标的相反数,题中纵坐标不变,横坐标都乘以-1,变为原来的数的相反数,所以关于y坐标轴对称,故B正确.2、C【分析】根据分式有意义的条件是分母不等于零可得到,解不等式即可.【详解】解:由题意得:,解得:,故选:.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.本题不难,要注意审题.3、A【解析】分析:根据分母不为零,可得答案详解:由题意,得,解得故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.4、B【分析】根据函数y=5﹣2x和一次函数的性质可以得到y随x的增大如何变化,本题得以解决.【详解】解:∵y=5﹣2x,k=﹣2<0,∴y的值随x值的增大而减小,故选:B.【点睛】本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键.5、B【分析】利用等式的性质、对顶角的定义、平形线的判定及性质分别判断后即可确定正确的选项.【详解】如果,那么互为相反数或,①是假命题;有公共顶点的两个角不一定是对顶角,②是假命题;两直线平行,同旁内角互补,由平行公理的推论知,③是真命题;

平行于同一条直线的两条直线平行,由平行线的性质知,④是真命题.综上,真命题有2个,故选:B.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6、D【分析】先根据平行四边形的性质得到,再根据垂直的定义及三角形的内角和求出.【详解】∵四边形ABCD为平行四边形,∴AB∥CD,∴∵∴=90°-=20°故选D.【点睛】此题主要考查平行四边形内的角度求解,解题的关键是熟知平行四边形的性质.7、A【分析】根据已知得出,求出后判断即可.【详解】解:将分式中的、的值同时扩大2倍为,即分式的值扩大2倍,故选:A.【点睛】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.8、B【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【详解】近似数0.13是精确到百分位,

故选B.【点睛】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.9、B【分析】分式有意义,则,求出x的取值范围即可.【详解】∵分式有意义,∴,解得:,故选B.【点睛】本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.10、D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,

∵AF=AF,∠1=∠2,AD=AB,

∴△ADF≌△ABF,

∴∠ADF=∠ABF,

又∵∠ABF=∠C=90°-∠CBF,

∴∠ADF=∠C,

∴FD∥BC.

故选B.

11、C【分析】根据题意,利用大正方形的面积减去小正方形的面积表示出长方形的面积,再化简整理即可.【详解】根据题意,得:(2m+3)2-(m+3)2=[(2m+3)+(m+3)][(2m+3)-(m+3)]=(3m+6)m=3m2+6m.故选C.【点睛】本题主要考查平方差公式的几何背景,解决此题的关键是利用两正方形的面积表示出长方形的面积.12、B【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把代入方程得:6m﹣10=﹣6,解得:m=,故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题(每题4分,共24分)13、1【分析】根据勾股定理计算即可.【详解】根据勾股定理得:斜边的平方=x2=82+152=1.故答案为:1.【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答本题的关键.14、1.【分析】在DO延长线上找一点M,根据多边形的外角和为360°可得出∠BOM=11°,再根据邻补角互补即可得出结论.【详解】解:在DO延长线上找一点M,如图所示.∵多边形的外角和为360°,∴∠BOM=360°﹣220°=11°.∵∠BOD+∠BOM=180°,∴∠BOD=180°﹣∠BOM=180°﹣11°=1°.故答案为:1【点睛】本题考查多边形的角度计算,关键在于熟记外角和360°.15、xn+1﹣1.【分析】观察算式,得到规律,直接利用规律填空即可.【详解】根据规律填空:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1.故答案为:xn+1﹣1.【点睛】本题考查平方差公式、多项式乘多项式、规律问题等知识,解题的关键是学会或转化的思想思考问题,学会从特殊到一般的探究规律的方法.16、7、8或13【分析】已知等式左边利用多项式乘以多项式法则变形,利用多项式相等的条件确定出的值即可.【详解】解:,,,均为正整数,,又,,.故答案为:7、8或13.【点睛】此题考查了多项式乘以多项式,以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解本题的关键17、【分析】由勾股定理得到的长度,利用等面积法求,结合已知条件得到答案.【详解】解:垂直平分,故答案为:.【点睛】本题考查的是勾股定理的应用,等面积法的应用,掌握以上知识是解题的关键.18、40【分析】根据全等三角形的性质可得CE=BC,∠ACB=∠DCE,根据等腰三角形的性质可得∠B的度数,进而可得∠ECB的度数,根据等量代换可证明∠ACD=∠ECB,即可得答案.【详解】∵△ABC≌△DEC,其中AB与DE是对应边,AC与DC是对应边,∴∠ACB=∠DCE,CE与BC是对应边,即CE=BC,∴∠B=∠CEB=70°,∴∠ECB=180°-2×70°=40°,∵∠ACD+∠ACE=∠ECB+∠ACE,∴∠ACD=∠ECB=40°.故答案为40【点睛】本题考查了全等三角形的性质及等腰三角形的性质,熟练掌握相关性质是解题关键.三、解答题(共78分)19、﹣b(2a﹣b)2【分析】提公因式﹣b,再利用完全平方公式分解因式.【详解】解:4ab2﹣4a2b﹣b1=﹣b(4a2﹣4ab+b2)=﹣b(2a﹣b)2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20、(3)(﹣3,3);(3)作图见解析(3)(﹣3,3).【解析】试题分析:(3)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(3)分别将三个顶点A、O、B,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(3)因为B的坐标是(3,3),所以B关于y轴对称的点的坐标是(-3,3)(3)将A向左移三个格得到A3,O向左平移三个单位得到O3,B向左平移三个单位得到B3,再连线得到△A3O3B3.(3)因为A的坐标是(3,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A3是(-3,3).考点:3.关于y轴对称点坐标规律3.图形平移后点的坐标规律21、AD=BE,AD⊥BE【分析】根据△ABC和△CDE都是等腰直角三角形,可证明△ACD≌△BCE,进而得到AD=BE,∠CAD=∠CBE,再根据对顶角相等,即可得到∠AFB=∠ACB=90°.【详解】解:AD=BE,AD⊥BE,理由如下:∵△ABC和△CDE都是等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∴△ACD≌△BCE(SAS)∴AD=BE,∠CAD=∠CBE,∵∠ADC=∠BDF∴∠AFB=∠ACB=90°,∴AD⊥BE∴AD=BE,AD⊥BE.【点睛】本题考查了全等三角形的判定及性质,解题的关键是充分利用已知条件,熟练掌握全等三角形的判定定理.22、(1)见解析;(2)见解析;(3);(4)2.5【分析】(1)由轴对称的性质,平移的性质,分别作出图形即可;(2)根据轴对称的性质,作出对称轴即可;(3)由轴对称的性质和平移的性质,即可求出点的坐标;(4)利用矩形面积减去三个小三角形的面积,即可得到答案.【详解】解:如图:(1),为所求;(2)直线l为所求;(3)由轴对称的性质,则点关于y轴对称的点;由平移的性质,则点关于y轴对称的点;(4)根据题意,结合网格问题,则;【点睛】本题考查了轴对称的性质,平移的性质,以及求三角形的面积,解题的关键是熟练掌握轴对称的性质和平移的性质,正确的作出图形.23、(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)【分析】(1)根据待定系数法可得直线l1的解析式;(2)如图1,过C作CH⊥x轴于H,求点E的坐标,利用C和E两点的坐标求直线l2的解析式,与直线l1列方程组可得点D的坐标,利用面积和可得△BCD的面积;(3)分四种情况:在x轴和y轴上,证明△DMQ≌△QNC(AAS),得DM=QN,QM=CN,设D(m,m+6)(m<0),表示点Q的坐标,根据OQ的长列方程可得m的值,从而得到结论.【详解】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(xC﹣xD)=;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6-=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).【点睛】本题是综合了一次函数的图象与性质,全等三角形的性质与判定,直角三角形与等腰直角三角形的性质等知识的分情况讨论动点动图问题,在熟练掌握知识的基础上,需要根据情况作出辅助线,或者作出符合题意的图象后分情况讨论.24、(1)证明见解析(1)1【解析】试题分析:(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(1)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=1HE=1.试题解析:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(1)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=1HE=1.25、(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论