2024届贵州省都匀市第一中学高三上数学期末教学质量检测模拟试题含解析_第1页
2024届贵州省都匀市第一中学高三上数学期末教学质量检测模拟试题含解析_第2页
2024届贵州省都匀市第一中学高三上数学期末教学质量检测模拟试题含解析_第3页
2024届贵州省都匀市第一中学高三上数学期末教学质量检测模拟试题含解析_第4页
2024届贵州省都匀市第一中学高三上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省都匀市第一中学高三上数学期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则的大小关系为()A. B. C. D.2.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A. B. C. D.3.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为()A. B. C. D.4.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.85.函数(且)的图象可能为()A. B. C. D.6.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤7.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是()A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强8.已知集合,则元素个数为()A.1 B.2 C.3 D.49.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为()A. B. C. D.10.已知等比数列满足,,则()A. B. C. D.11.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:①②③④点为函数的一个对称中心其中所有正确结论的编号是()A.①②③ B.①③④ C.①②④ D.②③④二、填空题:本题共4小题,每小题5分,共20分。13.已知,则的值为______.14.已知,,则与的夹角为.15.已知向量,,若,则______.16.从2、3、5、7、11、13这六个质数中任取两个数,这两个数的和仍是质数的概率是________(结果用最简分数表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在四面体中,,平面平面,,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.18.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.19.(12分)已知函数,其中.(1)当时,求在的切线方程;(2)求证:的极大值恒大于0.20.(12分)如图所示,在三棱柱中,为等边三角形,,,平面,是线段上靠近的三等分点.(1)求证:;(2)求直线与平面所成角的正弦值.21.(12分)已知,,分别为内角,,的对边,且.(1)证明:;(2)若的面积,,求角.22.(10分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【详解】因为,所以.因为,所以,因为,为增函数,所以所以,故选:A.【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.2、B【解析】

设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.【详解】设棱长为1,,,由题意得:,,,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.3、B【解析】

根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,,又以为直径的圆经过点,则,即,解得,,所以,,即,即,所以,双曲线的离心率为.故选:B.【点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.4、A【解析】

依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.5、D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.6、B【解析】

依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果.【详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.7、D【解析】

根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.8、B【解析】

作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.9、C【解析】

分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率.故选:C【点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.10、B【解析】由a1+a3+a5=21得a3+a5+a7=,选B.11、D【解析】

先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.【详解】解:由,得,所以,其在复平面内对应的点为,在第四象限故选:D【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.12、B【解析】

首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【详解】解:由题意可得,又∵和的图象都关于对称,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正确,②错误.故选:B【点睛】本题考查三角函数的性质的应用,三角函数的变换规则,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求,再根据的范围求出即可.【详解】由题可知,故.故答案为:.【点睛】本题考查分段函数函数值的求解,涉及对数的运算,属基础题.14、【解析】

根据已知条件,去括号得:,15、1【解析】

根据向量加法和减法的坐标运算,先分别求得与,再结合向量的模长公式即可求得的值.【详解】向量,则,则因为即,化简可得解得故答案为:【点睛】本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.16、【解析】

依据古典概型的计算公式,分别求“任取两个数”和“任取两个数,和是质数”的事件数,计算即可。【详解】“任取两个数”的事件数为,“任取两个数,和是质数”的事件有(2,3),(2,5),(2,11)共3个,所以任取两个数,这两个数的和仍是质数的概率是。【点睛】本题主要考查古典概型的概率求法。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】

(1)根据面面垂直的性质得到平面,从而得到,利用勾股定理得到,利用线面垂直的判定定理证得平面;(2)设,利用椎体的体积公式求得,利用导数研究函数的单调性,从而求得时,四面体的体积取得最大值,之后利用空间向量求得二面角的余弦值.【详解】(1)证明:因为,平面平面,平面平面,平面,所以平面,因为平面,所以.因为,所以,所以,因为,所以平面.(2)解:设,则,四面体的体积.,当时,,单调递增;当时,,单调递减.故当时,四面体的体积取得最大值.以为坐标原点,建立空间直角坐标系,则,,,,.设平面的法向量为,则,即,令,得,同理可得平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的性质,线面垂直的判定,椎体的体积,二面角的求法,在解题的过程中,注意巧用导数求解体积的最大值.18、(1)(2)点的坐标为【解析】

将抛物线方程与圆方程联立,消去得到关于的一元二次方程,抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,,,,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)可设方程的两个根分别为,(),则,,,,且,,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,,所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.【点睛】本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.19、(1)(2)证明见解析【解析】

(1)求导,代入,求出在处的导数值及函数值,由此即可求得切线方程;(2)分类讨论得出极大值即可判断.【详解】(1),当时,,,则在的切线方程为;(2)证明:令,解得或,①当时,恒成立,此时函数在上单调递减,∴函数无极值;②当时,令,解得,令,解得或,∴函数在上单调递增,在,上单调递减,∴;③当时,令,解得,令,解得或,∴函数在上单调递增,在,上单调递减,∴,综上,函数的极大值恒大于0.【点睛】本小题主要考查利用导数求切线方程,考查利用导数研究函数的极值,考查分类讨论的数学思想方法,属于中档题.20、(1)证明见解析(2)【解析】

(1)由,故,所以四边形为菱形,再通过,证得,所以四边形为正方形,得到.(2)根据(1)的论证,建立空间直角坐标,设平面的法向量为,由求得,再由,利用线面角的向量法公式求解.【详解】(1)因为,故,所以四边形为菱形,而平面,故.因为,故,故,即四边形为正方形,故.(2)依题意,.在正方形中,,故以为原点,所在直线分别为、、轴,建立如图所示的空间直角坐标系;如图所示:不纺设,则,又因为,所以.所以.设平面的法向量为,则,即,令,则.于是.又因为,设直线与平面所成角为,则,所以直线与平面所成角的正弦值为.【点睛】本题考查空间线面的位置关系、线面成角,还考查空间想象能力以及数形结合思想,属于中档题.21、(1)见解析;(2)【解析】

(1)利用余弦定理化简已知条件,由此证得(2)利用正弦定理化简(1)的结论,得到,利用三角形的面积公式列方程,由此求得,进而求得的值,从而求得角.【详解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【点睛】本小题主要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论