版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市十三校2024届八上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数为()A.40° B.50° C.60° D.70°2.如图,在等腰中,,与的平分线交于点,过点做,分别交、于点、,若的周长为18,则的长是()A.8 B.9 C.10 D.123.已知,则下列不等式中正确的是()A. B. C. D.4.将下列长度的三根木棒首尾顺次连接,能组成三角形的是()A.1,2,4 B.8,6,4 C.12,6,5 D.3,3,65.如图,是等边三角形,,则的度数为()A.50° B.55° C.60° D.65°6.中,是中线,是角平分线,是高,则下列4个结论正确的是()①②③④A.①②③ B.①②④ C.①②③④ D.②③④7.估计的值在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间8.已知:是线段外的两点,,点在直线上,若,则的长为()A. B. C. D.9.关于等腰三角形,有以下说法:(1)有一个角为的等腰三角形一定是锐角三角形(2)等腰三角形两边的中线一定相等(3)两个等腰三角形,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等(4)等腰三角形两底角的平分线的交点到三边距离相等其中,正确说法的个数为()A.个 B.个 C.个 D.个10.判断以下各组线段为边作三角形,可以构成直角三角形的是()A.6,15,17 B.7,12,15 C.13,15,20 D.7,24,2511.下列各式为分式的是()A. B. C. D.12.如果下列各组数是三角形的三边,则能组成直角三角形的是()A. B. C. D.二、填空题(每题4分,共24分)13.若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是_____14.若-,则的取值范围是__________.15.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他的步行速度为_____千米/小时.16.如图,在四边形中,,以为斜边均向形外作等腰直角三角形,其面积分别是,且,则的值为__________.17.如图,中,平分,平分,若,则__________18.如图,,,则的度数为__________.三、解答题(共78分)19.(8分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.20.(8分)如图,ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与B,C重合),连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)请你回答:“当DC等于时,ABDDCE”,并把“DC等于”作为已知条件,证明ABDDCE;(3)在D点的运动过程中,ADE的形状也在改变,判断当∠BAD等于时,ADE是等腰三角形.(直接写出结果,不写过程)21.(8分)如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.(1)证明:BD=CE;(2)证明:BD⊥CE.22.(10分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,的顶点都在格点上.(1)直接写出点的坐标;(2)试判断是不是直角三角形,并说明理由.23.(10分)如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,直接写出此时∠APB的度数及P点坐标24.(10分)(1)问题发现:如图(1),已知:在三角形中,,,直线经过点,直线,直线,垂足分别为点,试写出线段和之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在中,三点都在直线上,并且,其中为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),是三点所在直线上的两动点,(三点互不重合),点为平分线上的一点,且与均为等边三角形,连接,若,试判断的形状并说明理由.25.(12分)如图,已知在中,,,,是上的一点,,点从点出发沿射线方向以每秒个单位的速度向右运动.设点的运动时间为.连结.(1)当秒时,求的长度(结果保留根号);(2)当为等腰三角形时,求的值;(3)过点做于点.在点的运动过程中,当为何值时,能使?26.合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?
参考答案一、选择题(每题4分,共48分)1、C【分析】依据轴对称图形的性质可求得、的度数,然后用五边形的内角和减去、、、的度数即可.【详解】解:直线m是多边形ABCDE的对称轴,,,.故选C.【点睛】本题主要考查的是轴对称的性质、多边形的内角和公式的应用,熟练掌握相关知识是解题的关键.2、B【分析】先根据角平分线的定义及平行线的性质证明△BDO和△CEO是等腰三角形,再由等腰三角形的性质得BD=DO,CE=EO,则△ADE的周长=AB+AC,由此即可解决问题;【详解】解:∵在△ABC中,∠BAC与∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,CE=OE,∴△ADE的周长是:AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=18,∴AB=AC=1.故选:B.【点睛】本题考查等腰三角形的性质和判定,平行线的性质及角平分线的性质.利用平行线和角平分线推出等腰三角形是解题的关键.3、D【分析】根据不等式的性质解答即可.【详解】A.-2a<-2b,故该项错误;B.,故该项错误;C.2-a<2-b,故该项错误;D.正确,故选:D.【点睛】此题考查不等式的性质,熟记性质并熟练解题是关键.4、B【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、6+4>8,能组成三角形,故此选项正确;C、6+5<12,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;故选B.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5、A【分析】利用等边三角形三边相等,结合已知BC=BD,易证、都是等腰三角形,利用等边对等角及三角形内角和定理即可求得的度数.【详解】是等边三角形,,又,,,,,故选A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.6、C【解析】根据中线、高线、角平分线的性质结合等边三角形、直角三角形的性质依次判断即可求解.【详解】∵AE是中线,∴,①正确;∵,∴,又AE是中线,∴AE=CE=BE,∴△ACE为等边三角形,∴∵是角平分线,∴∴又∵是高∴∴故,②正确;∵AE是中线,△ACE为等边三角形,∴,③正确;作DG⊥AB,DH⊥AC,∵是角平分线∴DG=DH,∴=×BD×AF=×AB×DG,=CD×AF=×AC×DH,∴,④正确;故选C.【点睛】此题主要考查直角三角形的判定与性质,解题的关键是熟知中线、高线、角平分线的性质结合等边三角形、直角三角形的性质.7、D【详解】解:∵25<33<31,∴5<<1.故选D.【点睛】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8、B【分析】根据已知条件确定CD是AB的垂直平分线即可得出结论.【详解】解:∵AC=BC,
∴点C在AB的垂直平分线上,
∵AD=BD,
∴点D在AB的垂直平分线上,
∴CD垂直平分AB,
∵点在直线上,∴AP=BP,∵,∴BP=5,故选B.【点睛】本题主要考查了线段的垂直平分线,关键是熟练掌握线段的垂直平分线的性质.9、B【分析】由题意根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:(1)如果的角是底角,则顶角等于88°,此时三角形是锐角三角形;如果的角是顶角,则底角等于67°,此时三角形是锐角三角形,此说法正确;(2)当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,所以等腰三角形的两条中线不一定相等,此说法错误;(3)若两个等腰三角形的腰相等,腰上的高也相等.则这两个等腰三角形不一定全等,故此说法错误;(4)等腰三角形两底角的平分线的交点到三边距离相等,故此说法正确;综上可知(1)、(4)正确.故选:B.【点睛】本题考查全等三角形的判定和等腰三角形的性质以及三角形的内角和,熟练掌握各知识点是解题的关键.10、D【解析】根据勾股定理的逆定理逐一判断即可.【详解】A.因为62+152≠172,所以以6,15,17为边的三角形不是直角三角形,故A不符合题意;B.因为72+122≠152,所以以7,12,15为边的三角形不是直角三角形,故B不符合题意;C.因为132+152≠202,所以以13,15,20为边的三角形不是直角三角形,故C不符合题意D.因为72+242=252,所以以7,24,25为边的三角形是直角三角形,故D符合题意;故选D.【点睛】此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.11、D【解析】根据分式的定义即可求解.【详解】A.是整式,故错误;B.是整式,故错误;C.是整式,故错误;D.是分式,正确;故选D.【点睛】此题主要考查分式的识别,解题的关键是熟知分式的定义.12、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A.∵1+=2,∴此三角形是直角三角形,正确;B.∵1+3≠4,∴此三角形不是直角三角形,不符合题意;C.∵2+3≠6,∴此三角形不是直角三角形,不合题意;D.∵4+5≠6,∴此三角形不是直角三角形,不合题意.故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握计算公式.二、填空题(每题4分,共24分)13、-1【解析】试题解析:∵点M(a,﹣1)与点N(2,b)关于y轴对称,∴a=﹣2,b=﹣1,∴a+b=(﹣2)+(﹣1)=﹣1.故答案为﹣1.14、【分析】利用二次根式的性质()及绝对值的性质化简(),即可确定出x的范围.【详解】解:∵,∴.∴,即.故答案为:.【点睛】本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键.15、4【分析】先设他骑自行车的速度每小时走x千米,根据他步行12千米所用的时间与骑自行车36千米所用的时间相等,列出方程,求出方程的解即可求出骑自行车的速度,再根据步行速度=骑自行车速度-8可得出结论.【详解】设他骑自行车的速度每小时走x千米,根据题意得:=解得:x=12,经检验:x=12是原分式方程的解.则步行的速度=12-8=4.答:他步行的速度是4千米/小时.故答案为4.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.16、1【分析】过点B作BM∥AD,根据AB∥CD,求证四边形ADMB是平行四边形,再利用∠ADC+∠BCD=90°,求证△MBC为直角三角形,再利用勾股定理得出MC2=MB2+BC2,根据等腰直角三角形的性质分别求出三个等腰直角三角形的面积,计算即可.【详解】解:过点B作BM∥AD交CD于M,∵AB∥CD,∴四边形ADMB是平行四边形,∴AB=DM,AD=BM,∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°,即∠MBC=90°,∴MC2=MB2+BC2,∵△ADE是等腰直角三角形,∴AE2+DE2=AD2,∴AE2=DE2=AD2,∴S1=×AE×DE=AE2=AD2,,同理:S2=AB2,S3=BC2,S1+S3=AD2+BC2=BM2+BC2=MC2,∵CD=3AB,∴MC=2AB,∴S1+S3=×(2AB)2=AB2,∴S1+S3=1S2,即k=1,故答案为:1.【点睛】本题考查了平行四边形的判定与性质,等腰直角三角形的性质,以及勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17、120°【分析】先求出∠ABC+∠ACB,根据角平分线求出∠PBC、∠PCB的度数和,再根据三角形内角和求出∠BPC.【详解】∵,∴∠ABC+∠ACB=120,∵平分,平分,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=60,∴∠BPC=180-(∠PBC+∠PCB)=120°,故答案为:120°.【点睛】此题考查三角形的内角和定理,角平分线的性质,题中利用角平分线求出∠PBC、∠PCB的度数和是解题的关键.18、【分析】直接利用全等三角形的性质得出对应角相等进而求出答案.【详解】:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,∴∠DCA=65°-40°=25°.故答案为:25°.【点睛】此题主要考查了全等三角形的性质,正确得出对应角的度数是解题关键.三、解答题(共78分)19、x2﹣1;x3﹣1;x4﹣1;(1)x7﹣1;(2)xn﹣1;(3)236﹣1.【分析】利用多项式乘以多项式法则计算各式即可;(1)根据上述规律写出结果即可;(2)归纳总结得到一般性规律,写出即可;(3)利用得出的规律计算即可得到结果.【详解】(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=xn﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)20;(2)2;2;证明见解析;(3)30°或60°【分析】(1)根据外角等于不相邻两内角和可解题;(2)当DC=AB=2时,即可求证△ABD≌△DCE;(3)分类谈论,①若AD=AE时;②若DA=DE时,③若EA=ED时,即可解题.【详解】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=20°.(2)DC=AB=2时,∵AB=AC=2,∴∠B=∠C,∵∠BAD=180°-∠B-∠ADB=180°-40°-∠ADB=140°-∠ADB,∠CDE=180°-∠ADE-∠ADB=180°-40°-∠ADB=140°-∠ADB,∴∠BAD=∠CDE.在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)∵AB=AC,∴∠B=∠C=40°,①若AD=AE时,则∠ADE=∠AED=40°,∵∠AED>∠C,∴△ADE不可能是等腰三角形;②若DA=DE时,即∠DAE=∠DEA=(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;③若EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴当∠BAD=30°或60°时,△ADE是等腰三角形.【点睛】本题考查了全等三角形的判定,三角形外角的性质,等腰三角形的判定和性质.运用分类讨论解本题是解题的关键.21、(1)证明见解析;(2)证明见解析.【分析】(1)要证明BD=CE,只要证明△ABD≌△ACE即可,两三角形中,已知的条件有AD=AE,AB=AC,那么只要再得出两对应边的夹角相等即可得出三角形全等的结论.我们发现∠BAD和∠EAC都是90°加上一个∠CAD,因此∠CAE=∠BAD.由此构成了两三角形全等中的(SAS)因此两三角形全等.(2)要证BD⊥CE,只要证明∠BMC是个直角就行了.由(1)得出的全等三角形我们可知:∠ABN=∠ACE,三角形ABC中,∠ABN+∠CBN+∠BCN=90°,根据上面的相等角,我们可得出∠ACE+∠CBN+∠BCN=90°,即∠ABN+∠ACE=90°,因此∠BMC就是直角.【详解】证明:(1)∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠CAE=∠BAD在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE(2)∵△ABD≌△ACE∴∠ABN=∠ACE∵∠ANB=∠CND∴∠ABN+∠ANB=∠CND+∠NCE=90°∴∠CMN=90°即BD⊥CE.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定,利用全等三角形得出线段相等和角相等是解题的关键.22、(1)A(-1,5),B(-5,2),C(-3,1);(2)△ABC是直角三角形,理由见解析.【分析】(1)根据网格中三角形所处位置即可得出坐标;(2)利用勾股定理逆定理进行判定即可.【详解】(1)根据题意,得A(-1,5),B(-5,2),C(-3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.【点睛】此题主要考查平面直角坐标系中网格三角形坐标的求解以及勾股定理逆定理的运用,熟练掌握,即可解题.23、(1)(1,-4);(2)证明见解析;(3)【分析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;
(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;
(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【详解】解:(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,因为,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH,在△ABO和△BCH中,:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,在△PBA和△QBC中,:.PA=CQ;(3)是等腰直角三角形,:所以∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.24、(1)DE=CE+BD;(2)成立,理由见解析;(3)△DEF为等边三角形,理由见解析.【分析】(1)利用已知得出∠CAE=∠ABD,进而根据AAS证明△ABD与△CAE全等,然后进一步求解即可;(2)根据,得出∠CAE=∠ABD,在△ADB与△CEA中,根据AAS证明二者全等从而得出AE=BD,AD=CE,然后进一步证明即可;(3)结合之前的结论可得△ADB与△CEA全等,从而得出BD=AE,∠DBA=∠CAE,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF与△EAF全等,在此基础上进一步证明求解即可.【详解】(1)∵直线,直线,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD,在△ABD与△CAE中,∵∠ABD=∠CAE,∠BDA=∠AEC,AB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∵,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,(3)为等边三角形,理由如下:由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.25、(1)2;(2)4或16或2;(3)2或1.【分析】(1)根据题意得BP=2t,从而求出PC的长,然后利用勾股定理即可求出AP的长;(2)先利用勾股定理求出AB的长,然后根据等腰三角形腰的情况分类讨论,分别列出方程即可求出t的值;(3)根据点P的位置分类讨论,分别画出对应的图形,根据勾股定理求出AE,分别利用角平分线的性质和判定求出AP,利用勾股定理列出方程,即可求出t的值.【详解】(1)根据题意,得BP=2t,∴PC=16-2t=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 协议离婚的协议书范本10篇
- 2023安全生产责任协议书七篇
- 万能模板赔偿协议书范本10篇
- 机械基础 课件 模块六任务二 链传动
- 中医药基础专题知识宣教
- (立项备案申请模板)超薄金刚石项目可行性研究报告参考范文
- (安全生产)选矿厂安全生产标准化自评报告
- (2024)酒文化创意产业园建设项目可行性研究报告(一)
- 清明节缅怀先烈主题班会71
- 2023年薄板木船项目筹资方案
- 【基于抖音短视频的营销策略分析文献综述2800字(论文)】
- 2021-2022学年度西城区五年级上册英语期末考试试题
- 《组织行为学》(本)形考任务1-4
- 广东省广州市白云区2022-2023学年九年级上学期期末语文试题
- 剧本-进入黑夜的漫长旅程
- DB43-T 958.3-2023 实验用小型猪 第3部分:配合饲料
- 化肥购销合同范本正规范本(通用版)
- 健康管理专业职业生涯规划书
- 外墙岩棉板施工方案
- 吊装葫芦施工方案
- 自动化设备调试规范
评论
0/150
提交评论