安徽省寿县2024届数学八上期末质量跟踪监视试题含解析_第1页
安徽省寿县2024届数学八上期末质量跟踪监视试题含解析_第2页
安徽省寿县2024届数学八上期末质量跟踪监视试题含解析_第3页
安徽省寿县2024届数学八上期末质量跟踪监视试题含解析_第4页
安徽省寿县2024届数学八上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省寿县2024届数学八上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图:是的外角,平分,若,,则等于()A. B. C. D.2.下列从左到右的变形中,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣5x+6=(x﹣2)(x﹣3)C.m2﹣2m﹣3=m(m﹣2)﹣3 D.m(a+b+c)=ma+mb+mc3.已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.m< B.m> C.m≥1 D.m<14.如图反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米 B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米 D.张强从早餐店回家的平均速度是3千米/小时5.如图,在中,,,,则的度数为()A. B. C. D.6.4的平方根是()A.2 B.±2 C. D.7.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2) B.(﹣9,6) C.(﹣1,6) D.(﹣9,2)8.“Iamagoodstudent.”这句话中,字母“a”出现的频率是()A.2 B. C. D.9.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10° B.15° C.20° D.25°10.如图,在△ABC中,CD平分∠ACB交AB于点D,于点E,于点F,且BC=4,DE=2,则△BCD的面积是()A.4 B.2 C.8 D.6二、填空题(每小题3分,共24分)11.如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.12.李华同学在解分式方程去分母时,方程右边的没有乘以任何整式,若此时求得方程的解为,则的值为___________.13.如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°,在射线OB上有一点P,从点P点射出的一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是___________14.将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.15.计算:______________.16.分解因式:______________17.数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣2)(b﹣1).现将数对(m,2)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是_____.(结果要化简)18.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为_____.三、解答题(共66分)19.(10分)如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短.若能,请画出点M、N的位置,若不能,请说明理由;(2)若∠ACB=40°,在(1)的条件下,求出∠MPN的度数.20.(6分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是,类别D所对应的扇形圆心角的度数是度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.(6分)某学校为了调查学生对课改实验的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”.工作人员根据问卷调查数据绘制了两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将条形统计图中的B等级补完整;(3)求出扇形统计图中,D等级所对应扇形的圆心角度数.22.(8分)观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1…①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.②你能否由此归纳出一般性规律:(x-1)(xn+xn-1+…+x+1)=______.③根据②求出:1+2+22+…+234+235的结果.23.(8分)学校组织学生到距离学校5的县科技馆去参观,学生小明因事没能乘上学校的班车,于是准备在校门口乘出租车去县科技馆,出租车收费标准如下:里程收费/元3以下(含3)8.003以上(每增加1)2.00(1)出租车行驶的里程为(,为整数),请用的代数式表示车费元;(2)小明身上仅有14元钱,够不够支付乘出租车到科技馆的车费?请说明理由.24.(8分)先观察下列等式,再回答问题:①;②;③;(1)根据上面三个等式,请猜想的结果(直接写出结果)(2)根据上述规律,解答问题:设,求不超过的最大整数是多少?25.(10分)已知与成正比例,且时,.求y与x之间的函数关系式;若点是该函数图象上的一点,求m的值.26.(10分)解答下面两题:(1)解方程:(2)化简:

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据三角形外角性质求出,根据角平分线定义求出即可.【详解】∵,

∴,

∵平分,

∴,

故选:D.【点睛】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.2、B【分析】根据因式分解的定义:把一个多项式写成几个因式乘积的形式,逐个判断即可.【详解】解:A、不是因式分解,故本选不项符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的意义,解决本题的关键是熟练掌握因式分解的意义,明确因式分解的形式是几个因式乘积。3、A【解析】分析:由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.详解:∵点P(−1,y1)、点Q(3,y2)在一次函数y=(2m−1)x+2的图象上,∴当−1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m−1<0,解得故选A.点睛:考查一次函数的性质,,一次函数当时,y随着x的增大而增大,当时,y随着x的增大而减小.4、C【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】A、由纵坐标看出,体育场离张强家2.5千米,故A正确;B、由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故B正确;C、由纵坐标看出,2.5-1.5=1千米,体育场离早餐店1千米,故C错误;D、由纵坐标看出早餐店离家1.5千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小时,1.5÷=3千米/小时,故D正确.故选C.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.5、B【分析】由题中条件可得,即,可由与、的差表示,进而求解即可.【详解】∵,∴,在和中∴(SAS),∴,,∵.∴,∴.故选B.【点睛】考查了全等三角形的判定及性质,解题关键是熟记其判定和性质,并灵活运用解题问题.6、B【分析】根据平方根的定义即可求得答案.【详解】解:∵(±1)1=4,

∴4的平方根是±1.

故选:B.【点睛】本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7、A【分析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;【详解】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选A.【点睛】本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.8、B【解析】这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选B.9、A【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.10、A【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,

∴DF=DE=2,∴;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.二、填空题(每小题3分,共24分)11、1【分析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【点睛】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.12、−2或−1【分析】先按李华同学的方法去分母,再将x=3代入方程,即可求得m的值.注意因为x−2=−(2−x),所以本题要分两种情况进行讨论.【详解】解答:解:按李华同学的方法,分两种情况:①方程两边同乘(x−2),得2x−3+m=1,把x=3代入得6−3+m=1,解得m=−2;②方程两边同乘(2−x),得−2x+3−m=1,把x=3代入得−6+3−m=1,解得m=−1.故答案为:−2或−1.【点睛】本题考查了解分式方程的思想与解一元一次方程的能力,既是基础知识又是重点.由于方程中两个分母互为相反数,所以去分母时,需分情况讨论,这是本题的关键.13、80°【解析】已知反射光线QR恰好与OB平行,根据平行线的性质可得∠AOB=∠AQR=40°,根据平角的定义可得∠PQR=100°,再由两直线平行,同旁内角互补互补可得∠QPB=80°.14、y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.15、-1【解析】根据实数的性质即可化简求解.【详解】1-3=-1故答案为:-1.【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.16、.【分析】根据平方差公式分解即可.【详解】解:.故答案为.【点睛】本题考查了多项式的因式分解,熟练掌握分解因式的方法是关键.17、m2﹣5m+4【分析】魔术盒的变化为:数对进去后变成第一个数减2的差乘以第二个数减1的差的积.把各个数对放入魔术盒,计算结果即可.【详解】解:当数对(m,2)放入魔术盒,得到的新数n=(m﹣2)(2﹣1)=m﹣2,把数对(n,m)放入魔术盒,得到的新数为:(n﹣2)(m﹣1)=(m﹣2﹣2)(m﹣1)=(m﹣4)(m﹣1)=m2﹣5m+4故答案为:m2﹣5m+4【点睛】本题考查了整式的乘法,多项式乘多项式,即用第一个多项式的每一项乘第二个多项式的每一项,熟练掌握多项式乘多项式是解题的关键.18、1【分析】设出一次函数的一般式,然后用待定系数法确定函数解析式,最后将x=0代入即可.【详解】解:设一次函数的解析式为y=kx+b(k≠0),由题意得:解得:所以函数解析式为:y=-x+1当x=0时,y=1,即p=1.故答案是:1.【点睛】本题考查了用待定系数法求一次函数解析式,解题的关键在于理解一次函数图象上的点坐标一定适合函数的解析式.三、解答题(共66分)19、(1)详见解析.(2)100°.【分析】(1)如图:作出点P关于AC、BC的对称点D、G,然后连接DG交AC、BC于两点,标注字母M、N;

(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,即而求得答案.【详解】解:(1)①作出点P关于AC、BC的对称点D、G,

②连接DG交AC、BC于两点,

③标注字母M、N;(2)∵PD⊥AC,PG⊥BC,

∴∠PEC=∠PFC=90°,

∴∠C+∠EPF=180°,

∵∠C=40°,

∴∠EPF=140°,

∵∠D+∠G+∠EPF=180°,

∴∠D+∠G=40°,

由对称可知:∠G=∠GPN,∠D=∠DPM,

∴∠GPN+∠DPM=40°,

∴∠MPN=140°-40°=100°.【点睛】此题考查了最短路径问题以及线段垂直平分线的性质,注意数形结合思想在解题中的应用.20、(1)50;(2)见解析;(3)32,57.6;(4)该校有448名学生寒假在家做家务的总时间不低于20小时.【解析】(1)本次共调查了10÷20%=50(人);(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),根据此信息补全条形统计图即可;(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名).【详解】(1)本次共调查了10÷20%=50(人),故答案为:50;(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°,故答案为:32,57.6;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名),答:估计该校有448名学生寒假在家做家务的总时间不低于20小时.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)共调查了200名学生.(2)作图见解析;(3)D等级所对应扇形的圆心角度数为18°.【分析】(1)A类学生除以A

所占百分比;

(2)求出B组人数绘图即可;

(3)求出D所占百分率,乘以360度即可.【详解】(1)40÷20%=200(人);

答:共调查了200名学生。

(2)B人数为200×50%=100人,B等级的条形图如图所示:

(3)360°×5%=18°.

答:D等级所对应扇形的圆心角度数为18°.【点睛】本题考查扇形统计图和条形统计图,解题的关键是读懂扇形统计图和条形统计图,掌握扇形统计图和条形统计图的计算.22、(1)x7-1;(2)xn+1-1;(3)236-1.【解析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用①中得出的规律化简即可得到结果;③原式变形后,利用②中得出的规律化简即可得到结果.【详解】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为①x7﹣1;②xn+1﹣1;③236﹣1【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23、(1);(2)够,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论