2024届孝感市八年级数学第一学期期末复习检测模拟试题含解析_第1页
2024届孝感市八年级数学第一学期期末复习检测模拟试题含解析_第2页
2024届孝感市八年级数学第一学期期末复习检测模拟试题含解析_第3页
2024届孝感市八年级数学第一学期期末复习检测模拟试题含解析_第4页
2024届孝感市八年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届孝感市八年级数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.72.已知点,均在双曲线上,下列说法中错误的是()A.若,则 B.若,则C.若,则 D.若,则3.如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图所示,在中,内角与外角的平分线相交于点,,交于,交于,连接、,下列结论:①;②;③垂直平分;④.其中正确的是()A.①②④ B.①③④ C.②③④ D.①③5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,等边△ABC中,BD⊥AC于D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.3cm B.4cm C.5cm D.6cm7.下列各数中,是无理数的是()A.3.14 B. C.0.57 D.8.如图,已知,点,,,…在射线上,点,,,…在射线上,,,,…均为等边三角形,若,则的边长为()A.8 B.16 C.24 D.329.分式方程的解是()A.x=1 B.x=-1 C.x=2 D.x=-210.下列命题中,逆命题为真命题的是()A.菱形的对角线互相垂直B.矩形的对角线相等C.平行四边形的对角线互相平分D.正方形的对角线垂直且相等11.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)一定在第四象限C.已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴D.已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)12.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°二、填空题(每题4分,共24分)13.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为_____.14.若=0,则x=_____.15.已知均为实数,若,则__________.16.如图,在中,,,点是边上的动点,设,当为直角三角形时,的值是__________.17.已知,则的值为__________.18.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;三、解答题(共78分)19.(8分)某业主贷款88000元购进一台机器,生产某种产品,已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%,若每个月能生产、销售8000个产品,问至少几个月后能赚回这台机器贷款?(用列不等式的方法解决)20.(8分)在中,垂直平分,分别交、于点、,垂直平分,分别交,于点、.⑴如图①,若,求的度数;⑵如图②,若,求的度数;⑶若,直接写出用表示大小的代数式.21.(8分)观察下列各式:,,,….(1)____________;(2)用含有(为正整数)的等式表示出来,并加以证明;(3)利用上面得到的规律,写出是哪个数的平方数.22.(10分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20151212B库2520108(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?23.(10分)如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.24.(10分)如图1,直线AB交x轴于点A(4,0),交y轴于点B(0,-4),(1)如图,若C的坐标为(-1,,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH,求证:∠OHP=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连结MD,过点D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.25.(12分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当时,求与之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?26.定义:在平面直角坐标系中,对于任意两点,,若点满足,那么称点是点,的融合点.例如:,,当点满足,时,则点是点,的融合点.(1)已知点,,,请说明其中一个点是另外两个点的融合点.(2)如图,点,点是直线上任意一点,点是点,的融合点.①试确定与的关系式;②在给定的坐标系中,画出①中的函数图象;③若直线交轴于点.当为直角三角形时,直接写出点的坐标.

参考答案一、选择题(每题4分,共48分)1、A【分析】作DE⊥AB于E,由角平分线的性质可得点D到AB的距离DE=CD,根据已知求得CD即可.【详解】解:作DE⊥AB于E.∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10,BD=6,∴CD=BC-BD=10-6=1,∴点D到AB的距离DE=1.故选:A.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.2、D【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线,用y1、y2表示出x1,x2,据此进行判断.【详解】∵点(x1,y1),(x2,y2)均在双曲线上,∴,.A、当x1=x2时,-=-,即y1=y2,故本选项说法正确;B、当x1=-x2时,-=,即y1=-y2,故本选项说法正确;C、因为双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当0<x1<x2时,y1<y2,故本选项说法正确;D、因为双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当x1<x2<0时,y1>y2,故本选项说法错误;故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、C【解析】试题分析:根据全等三角形的判定定理,即可得出:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;添加∠A=∠D,根据ASA,可证明△ABC≌△DEF,故B都正确;添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确.故选C.考点:全等三角形的判定.4、B【分析】①根据角平分线的性质和外角的性质即可得到结论;

②根据角平分线的性质和三角形的面积公式即可求出结论;

③根据线段垂直平分线的性质即可得结果;

④根据角平分线的性质和平行线的性质即可得到结果.【详解】①,②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴,故错误.③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP=∠FCP,又∵PG∥AD,∴∠FPC=∠DCP,∴.故①③④正确.故选B.【点睛】考查角平分线的性质,线段垂直平分线的性质,综合性比较强,难度较大.5、C【解析】试题分析:如图,过点E作EF⊥BC交BC于点F,根据角平分线的性质可得DE=EF=2,所以△BCE的面积等于,故答案选C.考点:角平分线的性质;三角形的面积公式.6、C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,【详解】解:如图,∵△ABC是等边三角形,

∴BA=BC,

∵BD⊥AC,

∴AD=DC=3.5cm,

作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,

∵AQ=2cm,AD=DC=3.5cm,

∴QD=DQ′=1.5(cm),

∴CQ′=BP=2(cm),

∴AP=AQ′=5(cm),

∵∠A=60°,

∴△APQ′是等边三角形,

∴PQ′=PA=5(cm),

∴PE+QE的最小值为5cm.

故选:C.【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.7、D【解析】根据无理数的定义,分别判断,即可得到答案.【详解】解:是无理数;3.14,,0.57是有理数;故选:D.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.8、D【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=2,得出△A1B1A2的边长为2,再依次同理得出:△A2B2A3的边长为4,△A4B4A5的边长为:24=16,则△A5B5A6的边长为:25=1.【详解】解:∵△A1B1A2为等边三角形,

∴∠B1A1A2=60°,A1B1=A1A2,

∵∠MON=30°,

∴∠OB1A1=60°-30°=30°,

∴∠MON=∠OB1A1,

∴B1A1=OA1=2,

∴△A1B1A2的边长为2,

同理得:∠OB2A2=30°,

∴OA2=A2B2=OA1+A1A2=2+2=4,

∴△A2B2A3的边长为4,

同理可得:△A3B3A4的边长为:23=8,

△A4B4A5的边长为:24=16,

则△A5B5A6的边长为:25=1,

故选:D.【点睛】本题考查了等边三角形的性质和外角定理,难度不大,需要运用类比的思想,依次求出各等边三角形的边长,并总结规律,才能得出结论.9、B【解析】根据分式方程的求解方法解题,注意检验根的情况;【详解】解:,两侧同时乘以,可得,解得;经检验是原方程的根;故选:B.【点睛】本题考查分式方程的解法;熟练掌握分式方程的方法是解题的关键.10、C【分析】首先写出各个命题的逆命题,再进一步判断真假.【详解】解:A、菱形的对角线互相垂直的逆命题是对角线互相垂直的四边形是菱形,是假命题;B、矩形的对角线相等的逆命题是对角线相等的四边形是矩形,是假命题;C、平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题;D、正方形的对角线垂直且相等的逆命题是对角线垂直且相等的四边形是正方形,是假命题;故选:C.【点睛】考核知识点:命题与逆命题.理解相关性质是关键.11、C【分析】直接利用坐标轴上点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A、若ab=0,则点P(a,b)表示在坐标轴上,故此选项错误;B、点(1,﹣a2)一定在第四象限或x轴上,故此选项错误;C、已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴,正确;D、已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)或(1,﹣7),故此选项错误.故选C.【点睛】本题考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键12、B【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.【点睛】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据平均数的定义计算即可.【详解】解:故答案为1.【点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.14、﹣1或2或1【分析】直接利用分式的值为零的条件得出分子为零进而计算得出答案.【详解】解:若=0,则x2﹣x﹣2=0或|x|﹣1=0且x+1≠0,解得:x=﹣1或2或1.故答案为:﹣1或2或1.【点睛】本题考查了求解分式方程,绝对值的性质应用,一元二次方程的解法,注意分式方程分母不为0的情况.15、1【分析】首先利用二次根式和平方的非负性建立方程求出,然后对所求代数式利用完全平方公式进行变形为,再整体代入即可.【详解】∵∴原式=故答案为:1.【点睛】本题主要考查二次根式与平方的非负性,整体代入法,完全平方公式,掌握二次根式与平方的非负性,整体代入法是解题的关键.16、或【分析】分两种情况讨论:①∠APB=90°,②∠BAP=90°,分别作图利用勾股定理即可解出.【详解】①当∠APB=90°时,如图所示,在Rt△ABP中,AB=3,∠B=30°,∴AP=AB=∴BP=②当∠BAP=90°时,如图所示,在Rt△ABP中,AB=3,∠B=30°,∴,即解得综上所述,的值为或.故答案为:或.【点睛】本题考查勾股定理的应用,解题的关键是掌握直角三角形中30度所对的直角边是斜边的一半.17、﹣1【分析】等式左边根据多项式的乘法法则计算,合并后对比两边系数即得答案.【详解】解:∵,,∴,∴m=﹣1.故答案为:﹣1.【点睛】本题考查了多项式乘多项式的运算法则,属于基础题型,熟练掌握多项式乘法的运算法则是解题关键.18、50【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.三、解答题(共78分)19、1个月【分析】设需要x个月后能赚回这台机器贷款,利用每个商品利润乘以销售8000个,再乘月份,比88000大,解之即可.【详解】解:设需要x个月后能赚回这台机器贷款,依题意,得:(8﹣8×10%﹣1)×8000x≥88000,解得:x≥1.答:至少1个月后能赚回这台机器贷款.【点睛】本题考查列不等式解决贷款问题,关键是掌握求出每个产品的利润,月销售额,月数之间的关系.20、(1)∠EAN=44°;(2)∠EAN=16°;(3)当0<α<90°时,∠EAN=180°-2α;当α>90°时,∠EAN=2α-180°.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC-(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN-∠BAC代入数据进行计算即可得解;(3)根据前两问的求解,分α<90°与α>90°两种情况解答.【详解】(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC-∠BAE-∠CAN=∠BAC-(∠B+∠C),在△ABC中,∠B+∠C=180°-∠BAC=180°-112°=68°,∴∠EAN=∠BAC-(∠BAE+∠CAN)=112°-68°=44°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,在△ABC中,∠B+∠C=180°-∠BAC=180°-82°=98°,∴∠EAN=∠BAE+∠CAN-∠BAC=98°-82°=16°;(3)当0<α<90°时,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,在△ABC中,∠B+∠C=180°-∠BAC=180°-α,∴∠EAN=∠BAE+∠CAN-∠BAC=180°-α-α=180°-2α;当α>90°时,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC-∠BAE-∠CAN=∠BAC-(∠B+∠C),在△ABC中,∠B+∠C=180°-∠BAC=180°-α,∴∠EAN=∠BAC-(∠BAE+∠CAN)=α-(180°-α)=2α-180°.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.21、(1);(2)或,理由见解析;(3)【分析】(1)根据规律为(2)根据规律为(3)【详解】解:(1).故答案为:;(2)或.理由如下:.(3).【点睛】本题考查了数字的规律,根据给出的式子找到规律是解题的关键.22、(1)y=-30x+39200(0≤x≤1);(2)从甲库运往A库1吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元【解析】试题分析:弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.试题解析:(1)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100-x)吨,乙库运往A库(1-x)吨,乙库运到B库(10+x)吨.则,解得:0≤x≤1.y=12×20x+10×25(100-x)+12×15(1-x)+8×20×[110-(100-x)]=-30x+39200其中0≤x≤1(2)上述一次函数中k=-30<0∴y随x的增大而减小∴当x=1吨时,总运费最省最省的总运费为:-30×1+39200=37100(元)答:从甲库运往A库1吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元.23、(1)∠1与∠B相等,理由见解析;(2)若BC=BD,AB与FB相等,理由见解析【分析】(1)∠ACB=90°,∠1+∠F=90°,又由于DF⊥AB,∠B+∠F=90°,继而可得出∠1=∠B;

(2)通过判定△ABC≌△FBD(AAS),可得出AB=FB.【详解】解:(1)∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.【点睛】本题考查全等三角形的判定(AAS)与性质、三角形内角和,解题的关键是掌握全等三角形的判定(AAS)与性质、三角形内角和.24、(1)P(0,1);(2)证明见解析;(3)不变;1.【分析】(1)利用坐标的特点,得出△OAP≌△OB,得出OP=OC=1,得出结论;

(2)过O分别做OM⊥CB于M点,ON⊥HA于N点,证出△COM≌△PON,得出OM=ON,HO平分∠CHA,求得结论;

(3)连接OD,则OD⊥AB,证得△ODM≌△ADN,利用三角形的面积进一步解决问题.试题解析:(1)由题得,OA=OB=1.【详解】解:∵AH⊥BC于H,∴∠OAP+∠OPA=∠BPH+∠OBC=90°,∴∠OAP=∠OBC在△OAP和△OBC中,∴△OAP≌△OBC(ASA),∴OP=OC=1,则点P(0,1)(2)过点O分别作OM⊥CB于M点,ON⊥HA于N点,在四边形OMHN中,∠MON=360°-3×90°=90°,∴∠COM=∠PON=90°-∠MOP在△COM和△PON中,,∴△COM≌△PON(AAS),∴OM=ON,∵HO平分∠CHA,∴;(3)的值不发生改变,理由如下:连结OD,则OD⊥AB,∠BOD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论