二元一次方程组知识点及例题_第1页
二元一次方程组知识点及例题_第2页
二元一次方程组知识点及例题_第3页
二元一次方程组知识点及例题_第4页
二元一次方程组知识点及例题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级数学上知识改变命运创造未来Page1Page1【教学标题】二元一次方程及方程组【教学目标】认识二元一次方程及方程组掌握二元一次方程组相关知识了解学习三元一次方程【重点难点】二元一次和三元一次方程组的应用【教学内容】二元一次方程组知识点归纳、解题技巧汇总、练习题1、把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。2、二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。二元一次方程经典例题解析例1、若方程是关于的二元一次方程,求、的值.解:∵方程是关于的二元一次方程∴解得例2、将方程变形,用含有的代数式表示.解:去括号得,移项得,合并同类项得,系数化为1得,例3、方程在正整数范围内有哪几组解?解:有三组解,分别是例4、若是方程组的解,求的值.解:∵是方程组的解∴解得例5、已知是关于的二元一次方程,求的值.解:∵是关于的二元一次方程∴解得∴(变式训练)已知是关于的二元一次方程,当时,求的值.知识点1:二元一次方程及其解1、下列各式是二元一次方程的是().2、若是关于的二元一次方程的一个(组)解,则的值为()3、对于二元一次方程有无数个解,下列四组值不是该方程的解的一组是()4、二元一次方程在正整数范围内的解有().无数个两个三个四个5、若是二元一次方程,则.6、关于的方程当时,是一元一次方程;当时,是二元一次方程.7、已知在方程中,若用含有的代数式表示,则,用含有的代数式表示,则8、若,则9、已知,则10、在二元一次方程中,当时,则;当时,则.3、二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。4、二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。5、二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。消元的方法有两种:代入消元法例:解方程组x+y=5……①6x+13y=89……②解:由①得:x=5-y……③把③带入②,得6(5-y)+13y=89y=59/7把y=59/7带入③,x=5-59/7即x=-24/7x=-24/7y=59/7加减消元法例:解方程组x+y=9……①x-y=5……②解:①+②2x=14即x=7把x=7带入①得7+y=9解得y=-2x=7y=-2二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7y=59/7为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。

注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。

教科书中没有的几种解法

(一)加减-代入混合使用的方法.例1,13x+14y=41(1)14x+13y=40(2)解:(2)-(1)得x-y=-1x=y-1(3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1x=1y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2,(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6x=1y-4=2y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。(三)另类换元例3,x:y=1:45x+6y=29令x=t,y=4t方程2可写为:5t+6*4t=2929t=29t=1所以x=1,y=4

知识点2:二元一次方程组及其解1、有下列方程组:(1)(2)(3)其中说法正确的是只有(1)、(3)是二元一次方程组只有(2)是二元一次方程组只有(3)是二元一次方程组(1)、(2)、(3)都是二元一次方程组2、下列哪组数是二元一次方程组的解()3、若方程组有无数组解,则、的值分别为()4、写出一个以为解的二元一次方程组;写出以为解的一个二元一次方程.5、已知是二元一次方程组的解,则的值为。6、如果且那么的值是.7、若与是同类项,则8、已知是方程组的解,求、的值.9、已知关于的方程组的解满足求式子的值.10、小花在家做家庭作业时,发现练习册上一道解方程组的题目被墨水污染,()表示被污染的内容,她着急地翻开书后面的答案,这道题目的解是,聪明的你能够帮她补上()的内容吗?二元一次方程组的解

一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解方程组。一般来说,二元一次方程组只有唯一的一个解。

注意:

二元一次方程组不一定都是由两个二元一次方程合在一起组成的!也可以由一个或多个二元一次方程单独组成。★重点★一元一次,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)列方程(组)解应用题一概述列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。⑶用含未知数的代数式表示相关的量。⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。⑸解方程及检验。⑹答案。综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。二常用的相等关系1.行程问题(匀速运动)基本关系:s=vt⑴相遇问题(同时出发):+=;⑵追及问题(同时出发):若甲出发t小时后,乙才出发,而后在B处追上甲,则⑶水中航行:;2.配料问题:溶质=溶液×浓度溶液=溶质+溶剂3.增长率问题:4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。三注意语言与解析式的互化二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:十位上的数个位上的数对应的两位数相等关系原两位数xy10x+y10x+y=x+y+9新两位数yx10y+x10y+x=10x+y+27解方程组,得,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组,解得,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得,解之,得.故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:.四、行程问题例4在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则,整理,得,解得,因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x吨,乙种货物装y吨,则,整理,得,解得,因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例6某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x套,要求的期限是y天,依题意,得,解得.点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.【过手练习】一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4zB.6xy+9=0C.+4y=6D.4x=2.下列方程组中,是二元一次方程组的是()A.3.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.5.若│x-2│+(3y+2)2=0,则x+3y的值是()A.-1B.0C.-3D.6.方程组的解,x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③+y=5;④x=y;⑤x2-y2=2⑥6x-2y⑦x+y+z=1⑧y(y-1)=2y2-y2+xA.1B.2C.3D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()A.二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2yn-1=5是二元一次方程,则m=_____,n=______.12.已知是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以为解的一个二元一次方程是_________.16.已知的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?【拓展训练】选择题1.解方程组,若要使运算简便,消元的方法应选取()

(A)先消去x.(B)先消去y.(C)先消去z.(D)以上说法都不对.

2.三元一次方程组,消去未知数后,得到的二元一次方程组是()

(A).(B).(C).(D).

3.三元一次方程组的解是()

(A).(B).(C).(D).

4.已知是方程组的解,则,,的值为()

(A).(B).(C).(D).

5.若方程组的解和的值互为相反数,则的值等于()

(A)0.(B)1.(C)2.(D)3.

6.已知方程组有无穷多组解,则的值分别为()

(A).(B).(C).(D)可取任意值.

7.己知,,满足方程组,则()

(A).(B).(C).(D).

8.若三元一次方程组的解使,则的值是()

(A)0.(B).(C).(D)-8.

9.如果,且,,则()

(A)18.(B)2.(C)0.(D)-2.

10.若,,都是不等于零的数,且,则()

(A)2.(B)-1.(C)2或-1.(D)不存在.

11.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法()

(A)1.(B)2.(C)3.(D)4.

12.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球有多少个?()

(A)21.(B)12.(C)8.(D)35.

二、填空题13.若是一个三元一次方程组,则x=______,y=_______,z=_______.

14.已知若用含的一次式表示,则________.

15.解三元一次方程组时,若先消去,得到关于,的二元一次方程组是_________;若先消去,得到关于,的二元一次方程组是________;若先消去,得到关于,的二元一次方程组是_________.因此比较简单的方法是先消去________.

16.已知代数式,当时,其值为;当时,其值为3;当时,其值为35.当时,其值是______

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论