2024届四川省南充市广安市广安中学八年级数学第一学期期末联考试题含解析_第1页
2024届四川省南充市广安市广安中学八年级数学第一学期期末联考试题含解析_第2页
2024届四川省南充市广安市广安中学八年级数学第一学期期末联考试题含解析_第3页
2024届四川省南充市广安市广安中学八年级数学第一学期期末联考试题含解析_第4页
2024届四川省南充市广安市广安中学八年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省南充市广安市广安中学八年级数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平行四边形ABCD中,对角线AC,BD交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11 B.2<m<22 C.10<m<12 D.5<m<62.边长为a和2a的两个正方形按如图所示的样式摆放,则图中阴影部分的面积为()A.2 B.3 C.4 D.63.某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为A. B.C. D.4.已知:且,则式子:的值为()A. B. C.-1 D.25.下列命题的逆命题为假命题的是()A.如果一元二次方程没有实数根,那么.B.线段垂直平分线上任意一点到这条线段两个端点的距离相等.C.如果两个数相等,那么它们的平方相等.D.直角三角形两条直角边的平方和等于斜边的平方.6.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.807.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.648.下列计算正确的是()A.x2•x4=x8 B.x6÷x3=x2C.2a2+3a3=5a5 D.(2x3)2=4x69.如图所示,在中,内角与外角的平分线相交于点,,交于,交于,连接、,下列结论:①;②;③垂直平分;④.其中正确的是()A.①②④ B.①③④ C.②③④ D.①③10.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC11.已知,,则的值为()A.8 B.6 C.12 D.12.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.8的立方根为_______.14.用四舍五入法将2.0259精确到0.01的近似值为_____.15.如果多边形的每个内角都等于,则它的边数为______.16.请用“如果…,那么…”的形式写一个命题______________17.因式分解:=______,=________.18.若n边形的每一个外角都是72°,则边数n为_____.三、解答题(共78分)19.(8分)如图,点A、C、D、B在同一条直线上,且(1)求证:(2)若,求的度数.20.(8分)如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴;(2)结合图形,在对称轴上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.21.(8分)在等腰Rt△ABC中,∠C=90°,AC=BC,点M,N分别是边AB,BC上的动点,△BMN与△B′MN关于直线MN对称,点B的对称点为B′.(1)如图1,当B′在边AC上时,若∠CNB′=25°,求∠AMB′的度数;(2)如图2,当∠BMB′=30°且CN=MN时,若CM•BC=2,求△AMC的面积;(3)如图3,当M是AB边上的中点,B′N交AC于点D,若B′N∥AB,求证:B′D=CN.22.(10分)如图,点在上,和都是等边三角形.猜想:三条线段之间的关系,并说明理由.23.(10分)如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断BCD的形状;(2)求该船从A处航行至D处所用的时间.24.(10分),两种机器人都被用来搬运化工原料,型机器人每小时搬运的化工原料是型机器人每小时搬运的化工原料的1.5倍,型机器人搬运900所用时间比型机器人搬运800所用时间少1小时.(1)求两种机器人每小时分别搬运多少化工原料?(2)某化工厂有8000化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时,现计划先由6个型机器人搬运3小时,再增加若干个型机器人一起搬运,请问至少要增加多少个型机器人?25.(12分)感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:(1)如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:(2)在图2中,AD平分∠BAC,如果∠B=60°,∠C=120°,DB=2,AC=3,则AB=.26.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据三角形三边关系判断即可.【详解】∵ABCD是平行四边形,AC=12,BD=10,O为AC和BD的交点,∴AO=6,BO=5,∴6-5<m<6+5,即1<m<11故选:A.【点睛】本题考查平行四边形的性质和三角形的三边关系,关键在于熟记三角关系.2、A【分析】图中阴影部分的面积为两个正方形面积的和减去空白三角形的面积即可求解.【详解】根据图形,得图中阴影部分的面积=大正方形的面积+小正方形的面积﹣空白三角形的面积.即:4a1+a1=5a1﹣3a1=1a1.故选A.【点睛】本题考查了列代数式,解决本题的关键是观察图形所给条件并列式.3、A【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-12,由此可得到所求的方程.【详解】解:根据题意,得:故选:A.【点睛】此题考查分式方程的问题,关键是根据公式:包装箱的个数与文具的总个数÷每个包装箱装的文具个数是等量关系解答.4、A【分析】先通过约分将已知条件的分式方程化为整式方程并求解,再变形要求的整式,最后代入具体值计算即得.【详解】解:∵∴∴∴∴经检验得是分式方程的解.∵∴∴故选:A.【点睛】本题考查分式的基本性质及整式的乘除法运算,熟练掌握完全平方公式是求解关键,计算过程中为使得计算简便应该先变形要求的整式.5、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】、逆命题为:如果一元一次方程中,那么没有实数根,正确,是真命题;、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.6、C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S阴影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故选C.考点:勾股定理.7、C【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.8、D【分析】根据同底数幂的乘法,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【详解】解:A.应为x2•x4=x6,故本选项错误;B.应为x6÷x3=x3,故本选项错误;C.2a2与3a3不是同类项,不能合并,故本选项错误;D.(2x3)2=4x6,正确.故选:D.【点睛】本题考查合并同类项,同底数幂的乘法和除法、积的乘方,熟练掌握运算法则是解题的关键.注意掌握合并同类项时,不是同类项的一定不能合并.9、B【分析】①根据角平分线的性质和外角的性质即可得到结论;

②根据角平分线的性质和三角形的面积公式即可求出结论;

③根据线段垂直平分线的性质即可得结果;

④根据角平分线的性质和平行线的性质即可得到结果.【详解】①,②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴,故错误.③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP=∠FCP,又∵PG∥AD,∴∠FPC=∠DCP,∴.故①③④正确.故选B.【点睛】考查角平分线的性质,线段垂直平分线的性质,综合性比较强,难度较大.10、D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:【详解】分析:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.故选D.【点睛】本题考查全等三角形的判定,熟练掌握判定定理是关键.11、C【分析】首先根据同底数幂乘法,将所求式子进行转化形式,然后代入即可得解.【详解】由已知,得,故选:C.【点睛】此题主要考查同底数幂的运算,熟练掌握,即可解题.12、B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,

∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,

∵95>92,

∴乙同学最近几次数学考试成绩的平均数高,

∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.

故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.二、填空题(每题4分,共24分)13、2.【详解】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.14、2.1【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.1.故答案为:2.1.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.15、1【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.16、答案不唯一【解析】本题主要考查了命题的定义任何一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.答案不唯一,例如:如果两个角是同位角,那么这两个角相等.17、(x+9)(x-9)3a【分析】(1).利用平方差公式分解因式;(2).先提公因式,然后利用完全平方公式分解因式.【详解】(1)(x+9)(x-9);(2).【点睛】本题考查了利用提公因式法分解因式和利用公式法分解因式,解题的关键是根据式子特点找到合适的办法分解因式.18、5【解析】试题分析:n边形的每一个外角都是72°,由多边形外角和是360°,可求得多边形的边数是5.三、解答题(共78分)19、(1)证明见详解;(2)130°【分析】(1)由,得AD=BC,根据AAS可证明;(2)根据全等三角形的性质和三角形的外角的性质,即可得到答案.【详解】(1)∵点A、C、D、B在同一条直线上,,∴AC+CD=BD+CD,即AD=BC,在与中,∵∴(AAS)(2)∵,∴∴.【点睛】本题主要考查三角形全等的判定和性质定理,熟练掌握三角形全等的判定定理和性质定理是解题的关键.20、(1)见解析;(2)见解析;(1)1【分析】(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线;(2)连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得.【详解】解:(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线.(2)如图所示,点P即为所求;连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得,,故ABC的面积为1.【点睛】本题主要考察了对称轴的画法、求两点到第三点距离之和最短的情况、用割补法求三角形面积,解题的关键在于结合图形中对应点找出对称轴,并以此对称轴求得距离最短的情况.21、(1)65°;(2);(3)见解析【分析】(1)由△MNB′是由△MNB翻折得到,推出∠B=∠MB′N=45°,∠MNB=∠MNB′=(180°-25°)=77.5°,推出∠NMB=∠NMB′=57.5°,可得∠BMB°=115°解决问题.(2)如图2,作MH⊥AC于H.首先证明,推出S△ACM=即可解决问题.(3)如图3,设AM=BM=a,则AC=BC=a.通过计算证明CN=DB′即可.【详解】(1)如图,∵∠C=90°,CA=CB,∴∠A=∠B=45°,∵△MNB′是由△MNB翻折得到,∴∠B=∠MB′N=45°,∠MNB=∠MNB′=(180°-25°)=77.5°,∴∠NMB=∠NMB′=57.5°,∴∠BMB′=115°,∴∠AMB′=180°-115°=65°;(2)∵△MNB′是由△MNB翻折得到,∠BMB′=30°,∴∠BMN=∠NMB′=15°,∵∠B=45°,∴∠CNM=∠B+∠NMB=60°,∵CN=MN,∴△CMN是等边三角形,∴∠MCN=60°,∵∠ACB=90°,∴∠ACM=30°,如图,作MH⊥AC于H.∴∠MHC=90°,∴MH=CM,∵S△ACM=ACMH=BCCM=CMBC=;(3)如图,设AM=BM=a,则AC=BC=a.∵NB′∥AB,∴∠CND=∠B=45°,∠MND=∠NMB,∵∠MNB=∠MND,∴∠NMB=∠MNB,∴MB=BN=a,∴CN=a-a,∵∠C=90°,∴∠CDN=∠CND=45°,∴CD=CN,∵CA=CB,∴AD=BN=a,设AD交MB′于点O,∵MB=BN,∠B=45°,∴∠BMN=,∵△MNB′是由△MNB翻折得到,∴∠BMN=∠NMB′=,∴∠AMO=180∠BMN∠NMB′=180,∴是等腰直角三角形,且AM=a,∴AO=OM=a,OB′=OD=a-a,∴DB′=OD=a-a,∴B′D=CN.【点睛】本题属于三角形综合题,考查了等腰直角三角形的性质和判定,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考压轴题.22、AD=BD+CD.理由见解析【分析】首先证明△ABE≌△CBD,进而得到DC=AE,再由AD=AE+ED利用等量代换AD=BD+CD.【详解】解:BD+CD=AD;

∵△ABC和△BDE都是等边三角形,

∴AB=AC,EB=DB=ED,∠ABC=∠EBD=60°,

∴∠ABC-∠EBC=∠EBD-∠EBC,

即∠ABE=∠CBD,

在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),

∴DC=AE,

∵AD=AE+ED,

∴AD=BD+CD.【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定与性质.23、(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知△BCD是等边三角形;

(2)由(1)可求得BC,CD的长,然后易证得△ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,

∴∠BCD=∠BDC=60°,

∴BC=BD,

∴△BCD是等边三角形;

(2)∵△BCD是等边三角形,

∴CD=BD=BC=60海里,

∵∠BAC=90°-60°=30°,

∴∠ABC=∠BCD-∠BAC=30°,

∴∠BAC=∠ABC,

∴AC=BC=60海里,

∴AD=AC+CD=120海里,

∴该船从A处航行至D处所用的时间为:120÷15=8(小时);【点睛】此题考查了方向角问题.注意准确构造直角三角形是解此题的关键.24、(1)型机器人每小时搬运,型机器人每小时搬运化工原料;(2)1【分析】(1)根据题意设型机器人每小时搬运,型机器人每小时搬运,列出方程组,求解即得;(2)由(1)知,6个型机器人搬运3小时运了(),设至少增加m个型机器人,要搬运8000,时间不超过5小时,可得不等式方程,解不等式即得.【详解】(1)设型机器人每小时搬运化工原料,型机器人每小时搬运化工原料,则解得:答:型机器人每小时搬运,型机器人每小时搬运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论