版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济宁市邹城市九级八上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列因式分解正确的是()A. B.C. D.2.下列各组值中,不是方程的解的是()A. B. C. D.3.如果一条直线经过不同的三点,,,那么直线经过()A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限4.下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查5.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米6.若关于的分式方程无解,则的值是()A.3 B. C.9 D.7.计算:﹣64的立方根与16的平方根的和是()A.0 B.﹣8 C.0或﹣8 D.8或﹣88.已知不等式组的解集为,则的值为()A.-1 B.2019 C.1 D.-20199.下列说法正确的是().①若,则一元二次方程必有一根为-1.②已知关于x的方程有两实根,则k的取值范围是﹒③一个多边形对角线的条数等于它的边数的4倍,则这个多边形的内角和为1610度.④一个多边形剪去一个角后,内角和为1800度,则原多边形的边数是11或11.A.①③ B.①②③ C.②④ D.②③④10.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022A.甲 B.乙 C.丙 D.丁11.为整数,且的值也为整数,那么符合条件的的个数为()A.4个 B.3个 C.2个 D.1个12.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为()A.0.7×10-8 B.7×10-8 C.7×10-9 D.7×10-10二、填空题(每题4分,共24分)13.一组数据的平均数为,另一组数据,的中位数为___________.14.若分式有意义,则的取值范围是_______________.15.如图,如果你从点向西直走米后,向左转,转动的角度为°,再走米,再向左转40度,如此重复,最终你又回到点,则你一共走了__________米.16.如图,在中,,,的垂直平分线交于,交于,且,则的长为_______.17.计算:______.18.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是_____分.三、解答题(共78分)19.(8分)在一次捐款活动中,学校团支书想了解本校学生的捐款情况,随机抽取了50名学生的捐款进行了统计,并绘制成如图所示的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)如果捐款的学生有300人,估计这次捐款有多少元?20.(8分)如图在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.21.(8分)如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短.若能,请画出点M、N的位置,若不能,请说明理由;(2)若∠ACB=40°,在(1)的条件下,求出∠MPN的度数.22.(10分)如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.(10分)已知,如图,在中,是的中点,于点,于点,且.求证.完成下面的证明过程:证明:∵,(______)∴(______)∵是的中点∴又∵∴(______)∴(______)∴(______)24.(10分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)25.(12分)某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图像如图所示.(1)月用电量为100度时,应交电费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月用电量为260度时,应交电费多少元?26.如图,平行四边形的对角线交于点,分别过点作,连接交于点.(1)求证:;(2)当等于多少度时,四边形为菱形?请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可.【详解】A、,故此选项错误;B、,无法分解因式,故此选项错误;C、,无法分解因式,故此选项错误;D、,正确,故选D.【点睛】本题考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.2、B【分析】将x、y的值分别代入x-2y中,看结果是否等于1,判断x、y的值是否为方程x-2y=1的解.【详解】A项,当,时,,所以是方程的解;B项,当,时,,所以不是方程的解;C项,当,时,,所以是方程的解;D项,当,时,,所以是方程的解,故选B.【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.3、A【分析】一条直线l经过不同的三点,先设直线表达式为:,,把三点代入表达式,用a,b表示k、m,再判断即可.【详解】设直线表达式为:,将,,代入表达式中,得如下式子:,由(1)(2)得:,得,与(3)相减,得,直线为:.故选:A.【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.4、C【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.6、D【分析】根据分式方程的增根是使最简公分母为零的值,可得关于m的方程,根据解方程,可得答案.【详解】解:方程去分母得:,整理得:,∴,∵方程无解,∴,解得:m=-9.故选D.【点睛】本题考查了分式方程的解,利用分式方程的增根得出关于m的方程是解题关键.7、C【分析】由题意得,﹣64的立方根为﹣4,16的平方根为±4,再计算它们的和即可.【详解】解:由题意得:﹣64的立方根为﹣4,16的平方根为±4,∴﹣4+4=0或﹣4-4=-1.故选:C.【点睛】此题考查立方根的定义和平方根的定义,注意:一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根.8、A【分析】根据不等式组的解集即可得出关于a、b的方程组,解方程组即可得出a、b值,将其代入计算可得.【详解】解不等式x+a>1,得:x>1﹣a,解不等式2x+b<2,得:x<,所以不等式组的解集为1﹣a<x<.∵不等式组的解集为﹣2<x<3,∴1﹣a=﹣2,=3,解得:a=3,b=﹣4,∴=﹣1.故选:A.【点睛】本题考查了解一元一次不等式组,解题的关键是求出a、b值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.9、A【分析】①由可得4a-1b+c=0,当x=-1时,4a-1b+c=0成立,即可判定;②运用一元二次方程根的判别式求出k的范围进行比较即可判定;③设这个多边形的边数为n,根据多边形内角和定理求得n即可判定;④分剪刀所剪的直线过多边形一个顶点、两个顶点和不过顶点三种剪法进行判定即可.【详解】解:①b=1a+c,则4a-1b+c=0,一元二次方程必有一个根为-1.故①说法正确;②:有两实数根,:原方程是一元二次方程.,故②说法错误;③设这个多边形的边数为n,则解得n=11或0(舍去):这个多边形是11边形.:这个多边形的内角和为:(11-1)×180°=9×180°=1610°.故③说法正确;一个多边形剪去一个角的剪法有过多边形一个顶点、两个顶点和不过顶点三种剪法,会有三个结果,故④错.故选:A.【点睛】本题考查了一元二次方程的解和根的判别式以及多边形内角和定理,灵活应用所学知识是正确解答本题的关键.10、B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选:B.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.11、A【分析】根据题意可知,是2的约数,则为或,然后求出x的值,即可得到答案.【详解】解:∵为整数,且的值也为整数,∴是2的约数,∴或,∴为、0、2、3,共4个;故选:A.【点睛】本题考查了分式的值,正确理解分式的意义是解题的关键.12、C【分析】绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.【详解】0.000000007=7×10-9,故选:C.【点睛】题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.二、填空题(每题4分,共24分)13、【分析】先根据平均数的定义求出a的值,再根据中位数的定义求解即可.【详解】解:∵一组数据1,2,a的平均数为2,∴a=3,∴另一组数据-1,a,1,2为-1,3,1,2,∴中位数为,故答案为:.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14、【分析】根据分式有意义的条件:分母不能为0即可确定的取值范围.【详解】∵分式有意义解得故答案为:.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.15、1.【分析】根据题意转动的角度为°,结合图我们可以知道,最后形成的正多边形的一个外角是40°,利用多边形的外角和可求出是正几边形,即可求得一共走了多少米.【详解】解:360°÷40=9(边)9×25=1(米)故答案为:1【点睛】本题主要考查的是正多边形的性质以及多边形的外角和公式,掌握以上两个知识点是解题的关键.16、【分析】连接BE,由DE是AC的垂直平分线,可得∠DBE=∠A=30°,进而求得∠EBC=30°.根据含30度角的直角三角形的性质可得BE=2EC,AE=2EC,进而可以求得AE的长.【详解】连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=30°,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴BE是∠ABC的角平分线,∴DE=CE=5,在△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=1.故答案为:1cm.【点睛】此题主要考查线段的垂直平分线的性质和直角三角形的性质.熟练应用线段垂直平分线的性质是解题的关键.17、3【分析】根据立方根和平方根的定义进行化简计算即可.【详解】-2+5=3故答案为:3【点睛】本题考查的是实数的运算,掌握平方根及立方根是关键.18、89.1【分析】根据加权平均数公式计算即可:(其中w1、w2、……、wn分别为x1、x2、……、xn的权.).【详解】小明的数学期末成绩是=89.1(分),故答案为89.1.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.三、解答题(共78分)19、(1)15,15;(2)估计这次捐款有3900元.【解析】(1)根据众数和中位数的定义求解;(2)先计算出样本的平均数,然后利用样本估计总体,用样本平均数乘以300即可.【详解】解:(1)这50名同学捐款的众数为15元,第25个数和第26个数都是15元,所以中位数为15元;故答案为15,15;(2)样本的平均数=150(5×8+10×14+15×20+20×6+25×2)=13(元)300×13=3900,所以估计这次捐款有3900元.故答案为:(1)15,15;(2)估计这次捐款有3900元.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.20、(1)6;(2)120°(3)1.【分析】(1)根据垂直平分线的性质可得BM=AM,CN=AN,再根据三角形的周长即可求出BC;(2)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN;(3)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN,设MN=x,根据勾股定理列出方程求出x即可.【详解】解:(1)∵AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,∴BM=AM,CN=AN∵△AMN的周长为6,∴AM+AN+MN=6∴BC=BM+MN+CN=AM+MN+AN=6;(2)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=110°∴∠B+∠C=180°-∠BAC=30°∵BM=AM,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=30°∴∠MAN=∠EAF-(∠MAB+∠NAC)=120°;(3)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=131°∴∠B+∠C=180°-∠BAC=41°∵BM=AM=3,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=41°∴∠MAN=∠EAF-(∠MAB+∠NAC)=90°设MN=x,则AN=CN=BC-BM-MN=9-x在Rt△AMN中,MN2=AM2+AN2即x2=32+(9-x)2解得:x=1即MN=1【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质和勾股定理,掌握垂直平分线的性质、等边对等角和用勾股定理解直角三角形是解决此题的关键.21、(1)详见解析.(2)100°.【分析】(1)如图:作出点P关于AC、BC的对称点D、G,然后连接DG交AC、BC于两点,标注字母M、N;
(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,即而求得答案.【详解】解:(1)①作出点P关于AC、BC的对称点D、G,
②连接DG交AC、BC于两点,
③标注字母M、N;(2)∵PD⊥AC,PG⊥BC,
∴∠PEC=∠PFC=90°,
∴∠C+∠EPF=180°,
∵∠C=40°,
∴∠EPF=140°,
∵∠D+∠G+∠EPF=180°,
∴∠D+∠G=40°,
由对称可知:∠G=∠GPN,∠D=∠DPM,
∴∠GPN+∠DPM=40°,
∴∠MPN=140°-40°=100°.【点睛】此题考查了最短路径问题以及线段垂直平分线的性质,注意数形结合思想在解题中的应用.22、(1)△ACP≌△BPQ,PC⊥PQ,理由见解析;(2)2或【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C=∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.【详解】解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23、见解析【分析】根据题意,找出证明三角形全等的条件,利用HL证明Rt△BDE≌Rt△CDF,即可得到结论成立.【详解】解:∵DE⊥AB,DF⊥AC(已知)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国美容针数据监测研究报告
- 2025至2030年中国油壳螂数据监测研究报告
- 2025至2030年中国吸顶式格栅灯数据监测研究报告
- 2025至2030年中国三向四舌自动锁紧磁性门锁数据监测研究报告
- 2025年中国观音王茶市场调查研究报告
- 社区公园景观改造项目协议
- 2025至2030年中国网站自助构架系统数据监测研究报告
- 农产品社区便利店配送协议
- 教育心理学视角下的数学思维训练方法
- 学校图书馆管理与学生阅读习惯培养
- 软件项目应急措施及方案
- 2025河北邯郸经开国控资产运营管理限公司招聘专业技术人才5名高频重点提升(共500题)附带答案详解
- 2024年民法典知识竞赛考试题库及答案(共50题)
- 2025老年公寓合同管理制度
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 2024中国汽车后市场年度发展报告
- 钣金设备操作培训
- 感染性腹泻的护理查房
- 中考英语688高频词大纲词频表
- 九年级初三中考物理综合复习测试卷3套(含答案)
- 工地设计代表服务记录
评论
0/150
提交评论