2024届山东省济宁金乡县联考数学八上期末考试模拟试题含解析_第1页
2024届山东省济宁金乡县联考数学八上期末考试模拟试题含解析_第2页
2024届山东省济宁金乡县联考数学八上期末考试模拟试题含解析_第3页
2024届山东省济宁金乡县联考数学八上期末考试模拟试题含解析_第4页
2024届山东省济宁金乡县联考数学八上期末考试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济宁金乡县联考数学八上期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7 B.5,12,13 C.1,4,9 D.5,11,122.下列各数中最小的是()A.0 B.1 C.﹣ D.﹣π3.现有甲,乙两个工程队分别同时开挖两条600m长的隧道,所挖遂道长度y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是()A.甲队每天挖100mB.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当时,甲、乙两队所挖管道长度相同4.一次函数的图象与轴的交点坐标是()A.(-2,0) B.(,0) C.(0,2) D.(0,1)5.如图,等腰三角形ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则下列结论错误的是()A.∠EBC为36° B.BC=AEC.图中有2个等腰三角形 D.DE平分∠AEB6.下列长度的三条线段可以组成三角形的是()A.3,4,2 B.12,5,6C.1,5,9 D.5,2,77.如图,已知,则数轴上点所表示的数为()A. B. C. D.8.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=39.下列代数运算正确的是()A. B. C. D.10.如图,四个图标分别是北京大学、人民大学、浙江大学和宁波大学的校徽的重要组成部分,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.已知实数、在数轴上的位置如图所示,化简=_____________12.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=_____°.13.点P(3,2)关于y轴的对称点的坐标是_________.14.比较大小:__________1.(填>或<)15.已知,则=______.16.我们知道,实数与数轴上的点是一一对应的,任意一个实数在数轴上都能找到与之对应的点,比如我们可以在数轴上找到与数字2对应的点.(1)在如图所示的数轴上,画出一个你喜欢的无理数,并用点表示;(2)(1)中所取点表示的数字是______,相反数是_____,绝对值是______,倒数是_____,其到点5的距离是______.(3)取原点为,表示数字1的点为,将(1)中点向左平移2个单位长度,再取其关于点的对称点,求的长.17.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.18.是分式方程的解,则的值是______.三、解答题(共66分)19.(10分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表组别观点频数(人数)A损坏零件50B破译密码20C乱停乱放aD私锁共享单车,归为己用bE其他30调查结果扇形图请根据以上信息,解答下列问题:(1)填空:a=;b=;m=;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.20.(6分)如图,已知在同一直线上,,.求证:.21.(6分)(1)问题:如图在中,,,为边上一点(不与点,重合),连接,过点作,并满足,连接.则线段和线段的数量关系是_______,位置关系是_______.(2)探索:如图,当点为边上一点(不与点,重合),与均为等腰直角三角形,,,.试探索线段,,之间满足的等量关系,并证明你的结论;(3)拓展:如图,在四边形中,,若,,请直接写出线段的长.22.(8分)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?23.(8分)教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.1.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线是线段的垂直平分线,是上任一点,连结.将线段沿直线对折,我们发现与完全重合.由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段两端的距离相等.已知:如图,垂足为点,点是直线上的任意一点.求证:.分析图中有两个直角三角形和,只要证明这两个三角形全等,便可证得.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在中,直线分别是边的垂直平分线,直线m、n交于点,过点作于点.求证:.(1)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点.若,则的长为__________.24.(8分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.25.(10分)某商场第一次用元购进某款机器人进行销售,很快销售一空,商家又用元第二次购进同款机器人,所购进数量是第一次的倍,但单价贵了元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于不考虑其他因素,那么每个机器人的标价至少是多少元?26.(10分)综合与探究[问题]如图1,在中,,过点作直线平行于,点在直线上移动,角的一边DE始终经过点,另一边与交于点,研究和的数量关系.[探究发现](1)如图2,某数学学习小组运用“从特殊到一般”的数学思想,发现当点移动到使点与点重合时,很容易就可以得到请写出证明过程;[数学思考](2)如图3,若点是上的任意一点(不含端点),受(1)的启发,另一个学习小组过点,交于点,就可以证明,请完成证明过程;[拓展引申](3)若点是延长线上的任意一点,在图(4)中补充完整图形,并判断结论是否仍然成立.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:解:A、∵52+62≠72,故不能围成直角三角形,此选项错误;C、∵12+42≠92,故不能围成直角三角形,此选项错误;B、∵52+122=132,能围成直角三角形,此选项正确;D、∵52+112≠122,故不能围成直角三角形,此选项错误.故选B.考点:本题考查了勾股定理的逆定理点评:此类试题属于基础性试题,考生直接一招勾股定理把各项带入验证即可2、D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π<﹣<0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.3、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】解:由图象,得600÷6=100米/天,故A正确;(500-300)÷4=50米/天,故B正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D错误;故选:D.【点睛】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.4、D【分析】令x=0,代入函数解析式,求得y的值,即可得到答案.【详解】令x=0,代入得:,∴一次函数的图象与轴的交点坐标是:(0,1).故选D.【点睛】本题主要考查一次函数图象与y轴的交点坐标,掌握直线与y轴的交点坐标的特征,是解题的关键.5、C【解析】根据等腰三角形的性质和线段垂直平分线的性质一一判断即可.【详解】A.∵等腰△ABC的底角为72°,∴∠A=180°﹣72°×2=36°.∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°.故A正确;B.∵∠ABE=∠A=36°,∴∠BEC=72°.∵∠C=72°,∴∠BEC=∠C,∴BE=BC.∵AE=BE,∴BC=AE,故B正确;C.∵BC=BE=AE,∴△BEC、△ABE是等腰三角形.∵△ABC是等腰三角形,故一共有3个等腰三角形,故C错误;D.∵AE=BE,DE⊥AB,∴DE平分∠AEB.故D正确.故选C.【点睛】本题考查了线段垂直平分线的性质,以及等腰三角形的判定和性质,关键是掌握等边对等角.6、A【解析】根据三角形三边关系即可解题.【详解】解:根据三角形三边关系,A.3,4,2,正确B.12,5,6,错误,5+612,C.1,5,9,错误,1+59,D.5,2,7,错误,5+2=7,故选A.【点睛】本题考查了三角形三边关系,属于简单题,熟悉概念是解题关键.7、D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【详解】由勾股定理得,∴∵点A表示的数是1∴点C表示的数是故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.8、C【分析】分式有意义时,分母x﹣3≠0,据此求得x的取值范围.【详解】依题意得:x﹣3≠0,解得x≠3,故选C.【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.9、C【解析】试题分析:根据同底幂的乘法,幂的乘方和积运算的乘方法则以及完全平方公式逐一计算作出判断:A.,选项错误;B.,选项错误;C.,选项正确;D.,选项错误.故选C.考点:1.同底幂的乘法;2.幂的乘方和积运算的乘方;3.完全平方公式.10、B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】北京大学和宁波大学的校徽是轴对称图形,共2个,故选B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.二、填空题(每小题3分,共24分)11、【分析】先根据数轴的定义可得,从而可得,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:,则,因此,,,故答案为:.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.12、45【解析】解:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°.13、(﹣3,2).【详解】解:点P(m,n)关于y轴对称点的坐标P′(﹣m,n),所以点P(3,2)关于y轴对称的点的坐标为(﹣3,2).故答案为(﹣3,2).14、>【分析】先确定的取值范围是,即可解答本题.【详解】解:,;故答案为:>.【点睛】本题考查的是实数的大小比较,确定无理数的取值范围是解决此题的关键.15、25【分析】先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【详解】∵,∴,,解得,.∴=.故答案为25.【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.16、(1)见解析;(2)(答案不唯一);(3)(答案不唯一).【分析】(1)先在数轴上以原点为起始点,以某个单位长度的长为边长画正方形,再连接正方形的对角线,以对角线为半径,原点为圆心画弧即可在数轴上得到一个无理数;(2)根据(1)中的作图可得出无理数的值,然后根据相反数,绝对值,倒数的概念以及点与点间的距离概念作答;(3)先在数轴上作出点A平移后得到的点A′,点B,点C,再利用对称性及数轴上两点间的距离的定义,可求出CO的长.【详解】解:(1)如图所示:(答案不唯一)(2)由(1)作图可知,点表示的数字是,相反数是-,绝对值是,倒数是,其到点5的距离是5-,故答案为:(答案不唯一)(3)如图,将点向左平移2个单位长度,得到点,则点表示的数字为,关于点的对称点为,点表示的数字为1,∴A′B=BC=1-()=3-,∴A′C=2A′B=6-,∴CO=OA′+A′C=+6-=4-,即CO的长为.(答案不唯一)【点睛】本题考查无理数在数轴上的表示方法,数轴上两点间的距离的求法,勾股定理以及相反数、绝对值、倒数的概念,掌握基本概念是解题的关键.17、63°或27°.【解析】试题分析:等腰三角形分锐角和钝角两种情况,求出每种情况的顶角的度数,再利用等边对等角的性质(两底角相等)和三角形的内角和定理,即可求出底角的度数:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,∵∠ABD=36°,∴∠A=90°-36°=54°.∵AB=AC,∴∠ABC=∠C=×(180°-54°)=63°.(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,∵∠HFE=36°,∴∠HEF=90°-36°=54°,∴∠FEG=180°-54°=126°.∵EF=EG,∴∠EFG=∠G=×(180°-126°),=27°.考点:1.等腰三角形的性质;2.三角形内角和定理;分类思想的应用.18、3【分析】直接把代入分式方程,即可求出的值.【详解】解:把代入,则,整理得:,解得:;故答案为:3.【点睛】本题考查了分式方程的解.首先根据题意写出a的新方程,然后解出a的值.三、解答题(共66分)19、(1)60;40;15;(2)扇形图中B组所在扇形的圆心角度数为36°;(3)持有D组观点的市民人数大约为20万人.【分析】(1)从统计图中得到A组有50人,占调查人数的25%,可求出调查总人数,再求得C组、D组人数和m的值,

(2)先求出B组所占的百分比,再求得所占的圆心角的度数,

(3)根据样本估计总体,样本中D组占20%,估计总体中D组也占20%,从而而求出人数.【详解】(1)50÷25%=200人,c=200×30%=60人,b=200×20%=40人,30÷200=15%;(2)360°×(1﹣25%﹣30%﹣20%﹣15%)=36°;答:扇形图中B组所在扇形的圆心角度数为36°.(3)100×20%=20(万人)答:持有D组观点的市民人数大约为20万人.【点睛】考查了条形统计图、扇形统计图的意义,解题关键是从两个统计图中获取所需数据和数据之间的关系.20、证明见解析.【分析】由,则AD=AE,然后利用SAS证明△ABE≌△ACE,即可得到AB=AC.【详解】解:∵,∴AD=AE,∵,,∴△ABE≌△ACE,∴AB=AC.【点睛】本题考查了等角对等边的性质,以及全等三角形的判定和性质,解题的关键是熟练掌握等角对等边性质得到AD=AE.21、(1)=;⊥;(2)+=;(3)2【分析】(1)根据同角的余角相等得出∠BAD=∠CAE,可证△ADB≌△AEC,由全等三角形的性质即可得出结果;(2)连结CE,同(1)的方法证得△ADB≌△AEC,根据全等三角形的性质转换角度,可得△DCE为直角三角形,即可得,,之间满足的等量关系;(3)在AD上方作EA⊥AD,连结DE,同(2)的方法证得△DCE为直角三角形,由已知和勾股定理求得DE的长,再根据等腰直角三角形的性质和勾股定理即可求得AD的长.【详解】解:=,⊥,理由如下:∵,,∴∠ABC=∠ACB=45°,∵,∴,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,故答案为:=;⊥.(2)+=,证明如下:如图,连结CE,∵与均为等腰直角三角形,∴∠ABC=∠ACB=45°,,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,则△DCE为直角三角形,∴+=,∴+=;(3)如图,作EA⊥AD,使得AE=AD,连结DE、CE,∵,∴,AB=AC,∵,AE=AD,∴,,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∵,则△DCE为直角三角形,∵,,∴,则,在Rt△ADE中,AD=AE,∴,则.【点睛】本题是四边形综合题,主要考查了全等三角形的判定与性质、勾股定理、等腰直角三角形的性质,解题的关键是合理得添加辅助线找出两个三角形全等.22、(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意列出分式方程即可求出结论;(2)根据题意,求出该校购买甲种足球和乙种足球的数量即可得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意列出一元一次方程即可求出结论.【详解】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.23、证明见解析;(1)证明见解析;(1)2.【分析】定理证明:根据垂直的定义可得∠PAC=∠PCB=90°,利用SAS可证明△PAC≌△PBC,根据全等三角形的性质即可得出PA=PB;(1)如图,连结,根据垂直平分线的性质可得OB=OC,OA=OC,即可得出OA=OB,根据等腰三角形“三线合一”的性质可得AH=BH;(1)如图,连接BD、BE,根据等腰三角形的性质可得出∠A=∠C=30°,根据垂直平分线的性质可得AD=BD,CE=BE,根据等腰三角形的性质及外角的性质可证明三角形BDE是等边三角形,可得DE=AC,即可得答案.【详解】定理证明:,∴∠PAC=∠PCB=90°,,..(1)如图,连结.∵直线m、n分别是边的垂直平分线,..,.(1)如图,连接BD、BE,∵∠ABC=110°,AB=BC,∴∠A=∠C=30°,∵边的垂直平分线交于点,边的垂直平分线交于点,∴AD=BD,CE=BE,∴∠A=∠ABD,∠C=∠CBE,∴∠BDE=1∠A=20°,∠BED=1∠C=20°,∴∠DBE=20°∴△BDE是等边三角形,∴DE=BD=BE=AD=CE,∴DE=AC∵AC=18,∴DE=2故答案为:2.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.24、(1)见解析;(2)50;(3)1.【分析】(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,证明△ABF≌△ADE、△ABO≌△DAG,得到D点的坐标为(4,﹣3),根据三角形的面积公式计算;(3)作EH⊥BC于点H,作EG⊥x轴于点G,根据角平分线的性质得到EH=EG,证明△EBH≌△EOG,得到EB=EO,根据等腰三角形的判定定理解答.【详解】(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论