![2024届辽宁省沈阳市第八十七中学八年级数学第一学期期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M03/38/27/wKhkGWWIseuAOYHjAAI05Id8Qic436.jpg)
![2024届辽宁省沈阳市第八十七中学八年级数学第一学期期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M03/38/27/wKhkGWWIseuAOYHjAAI05Id8Qic4362.jpg)
![2024届辽宁省沈阳市第八十七中学八年级数学第一学期期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M03/38/27/wKhkGWWIseuAOYHjAAI05Id8Qic4363.jpg)
![2024届辽宁省沈阳市第八十七中学八年级数学第一学期期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M03/38/27/wKhkGWWIseuAOYHjAAI05Id8Qic4364.jpg)
![2024届辽宁省沈阳市第八十七中学八年级数学第一学期期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M03/38/27/wKhkGWWIseuAOYHjAAI05Id8Qic4365.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省沈阳市第八十七中学八年级数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一汽艇保持发动机的功率不变,它在相距30千米的两码头之间流动的河水中往返一次(其中汽艇的速度大于河水流动的速度)所用的时间是t1,它在平静的河水中行驶60千米所用的时间是t2,则t1与t2的关系是()A.t1>t2 B.t1<t2 C.t1=t2 D.以上均有可能2.证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:,以下是排乱的证明过程,正确的顺序应是①,.②四边形ABCD是平行四边形.③,.④.⑤,()A.②①③④⑤ B.②③⑤①④ C.②③①④⑤ D.③②①④⑤3.下列式子不正确的是()A. B. C. D.4.若实数满足,则的值为()A.2或 B. C. D.5.如图,已知AD=CB,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠DAB=∠CBA C.∠CAB=∠DBA D.∠C=∠D=90°6.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A. B.C. D.7.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①② B.②③ C.①②③ D.①②③④8.已知多边形的每一个外角都是72°,则该多边形的内角和是()A.700° B.720° C.540° D.1080°9.如图,在中,,,于,于,则三个结论①;②;③中,()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确10.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A.4 B.6 C.8 D.10二、填空题(每小题3分,共24分)11.∠A=65º,∠B=75º,将纸片一角折叠,使点C落在△ABC外,若∠2=20º,则∠1的度数为_______.12.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为_____.13.如图,已知线段,是的中点,直线经过点,,点是直线上一点,当为直角三角形时,则_____.14.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是_____.15.分解因式x(x﹣2)+3(2﹣x)=_____.16.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.17.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.18.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.三、解答题(共66分)19.(10分)过正方形(四边都相等,四个角都是直角)的顶点作一条直线.图(1)图(2)图(3)(1)当不与正方形任何一边相交时,过点作于点,过点作于点如图(1),请写出,,之间的数量关系,并证明你的结论.(2)若改变直线的位置,使与边相交如图(2),其它条件不变,,,的关系会发生变化,请直接写出,,的数量关系,不必证明;(3)若继续改变直线的位置,使与边相交如图(3),其它条件不变,,,的关系又会发生变化,请直接写出,,的数量关系,不必证明.20.(6分)甲、乙两名队员参加设计训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均数(环)中位数(环)众数(环)方差甲乙(1)表格中,,;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应选哪名队员?(3)如果乙再射击次,命中环,那么乙的射击成绩的方差.(填“变大”“变小”或“不变”)21.(6分)已知:如图,∠B=∠D,∠1=∠2,AB=AD,求证:BC=DE.22.(8分)已知△ABC,AB=AC,将△ABC沿BC方向平移到△DCE.(1)如图(1),连接AE,BD,求证:AE=BD;(2)如图(2),点M为AB边上一点,过点M作BC的平行线MN分别交边AC,DC,DE于点G,H,N,连接BH,GE.求证:BH=GE.23.(8分)按要求用尺规作图(要求:不写作法,但要保留作图痕迹.)已知:,求作:的角平分线.24.(8分)如图,在中,∠.(1)尺规作图:作的平分线交于点;(不写作法,保留作图痕迹)(2)已知,求的度数.25.(10分)2019年,在新泰市美丽乡村建设中,甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.己知道路硬化和道路拓宽改造工程的总里程数是1.6千米,其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工,甲工程队比乙工程队平均每天多施工10米.由于工期需要,甲工程队在完成所承担的施工任务后,通过技术改进使工作效率比原来提高了.设乙工程队平均每天施工米,若甲、乙两队同时完成施工任务,求乙工程队平均每天施工的米数和施工的天数.26.(10分)用消元法解方程组时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.
参考答案一、选择题(每小题3分,共30分)1、A【分析】设汽艇在静水中的速度为a千米/小时,水速为b千米/小时,根据题意列出算式,然后再比较大小即可.【详解】汽艇在静水中所用时间t1.汽艇在河水中所用时间t1.∵t1-t1=0,∴,∴t1>t1.故选A.【点睛】本题考查了分式的减法,根据题意列出汽艇在静水中和河水中所用时间的代数式是解题的关键.2、C【解析】利用平行四边形的性质证三角形全等,进而得出对应边相等,由此即可明确证明顺序.【详解】解:四边形ABCD是平行四边形,,,所以正确的顺序应为②③①④⑤故答案为:C【点睛】本题考查了平行四边形对角线互相平分的证明,明确证明思路是解题的关键.3、D【分析】利用同底数幂的乘法运算法则、零次幂性质、积的乘方运算法则以及幂的乘方运算法则逐一计算,然后再加以判断即可.【详解】A:,选项正确;B:,选项正确;C:,选项正确;D:,选项错误;故选:D.【点睛】本题主要考查了整数指数幂与运算,熟练掌握相关方法是解题关键.4、C【分析】先根据二次根式有意义的条件求出x的取值范围,然后根据题意可知和异号,但是根据二次根式和绝对值的非负性可得或,解出x的值,找到在取值范围内的即可.【详解】有意义∴∵∴或∴或∵∴故选:C.【点睛】本题主要考查绝对值和二次根式的非负性,二次根式有意义的条件,掌握二次根式有意义的条件,绝对值和二次根式的非负性是解题的关键.5、C【分析】由全等三角形的判定可求解.【详解】当AC=BD时,且AD=BC,AB=AB,由“SSS”可证△ABC≌△BAD;当∠DAB=∠CBA时,且AD=BC,AB=AB,由“SAS”可证△ABC≌△BAD;当∠CAB=∠DBA时,不能判定△ABC≌△BAD;当∠C=∠D=90°时,且AD=BC,AB=AB,由“HL”可证Rt△ABC≌Rt△BAD;故选C.【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.6、B【解析】根据乌龟早出发,早到终点,结合各图象进行分析判断即可.【详解】A、兔子后出发,先到了,不符合题意;B、乌龟比兔子早出发,而早到终点,符合题意;C、乌龟先出发后到,不符合题意;D、乌龟先出发,与兔子同时到终点,不符合题意,故选B.【点睛】本题考查了函数图象,弄清题意,认真分析是解题的关键.7、C【分析】证明≌,得出,正确;由,得出,正确;证出,,正确;由,不能确定,不正确;即可得出答案.【详解】解:∵∠CAE=90°,AE=AC,∴∠E=∠ACE=45°,∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACF=∠E=45°,①正确;∵S四边形ABCD=S△ABC+S△ACD,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.8、C【分析】由题意可知外角和是360°,除以一个外角度数即为多边形的边数,再根据多边形的内角和公式可求得该多边形的内角和.【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:5,∴该多边形的内角和为:(5﹣2)×180°=540°.故选:C.【点睛】本题考查多边形的内外角和,用到的知识点为:多边形的边数与外角的个数的关系;n边形的内角和公式为(n-2)×180°.9、B【分析】只要证明,推出,①正确;,由,推出,推出,可得,②正确;不能判断,③错误.【详解】在和中∴∴,,①正确∵∴∴∴,②正确在△BRP与△QSP中,只能得到,,不能判断三角形全等,因此只有①②正确故答案为:B.【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、平行线的性质以及判定定理是解题的关键.10、C【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.二、填空题(每小题3分,共24分)11、100°【解析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,
∴∠C=180°-∠A-∠B=180°-65°-75°=40°;
又∵将三角形纸片的一角折叠,使点C落在△ABC外,
∴∠C′=∠C=40°,
而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,
∴∠3+20°+∠4+40°+40°=180°,
∴∠3+∠4=80°,
∴∠1=180°-80°=100°.
故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.12、1.【分析】设出正方形的边长,根据正方形的面积公式和已知阴影部分的面积构建一个方程组,可整体求出正方形A、B的面积之和为1.【详解】解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:解得:x2+y2=1,∴SA+SB=x2+y2=1,故答案为1.【点睛】本题综合考查了完全平方公式的应用,正方形的面积公式,重点掌握完全平方公式的应用,难点是巧用变形求解两个正方形的面积和.13、2或或.【分析】分、、三种情况,根据直角三角形的性质、勾股定理计算即可.【详解】解:如图:∵,∴当时,,当时,∵,∴,∴,当时,∵,∴,故答案为2或或.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.14、1【解析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=10°,再根据直角三角形10°角所对的直角边等于斜边的一半求出BD,然后求解即可.【详解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=10°,∴BD=2DE=2,∴BC=BD+CD=1+2=1,故答案为1.【点睛】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键.15、(x﹣2)(x﹣3)【解析】原式提取公因式即可得到结果.【详解】原式=x(x−2)−3(x−2)=(x−2)(x−3),故答案为(x−2)(x−3)【点睛】考查因式分解,掌握提取公因式法是解题的关键.16、48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.17、50°【分析】根据直角三角形两锐角互余进行求解即可.【详解】∵直角三角形的一个内角为40°,∴这个直角三角形的另一个锐角=90°﹣40°=50°,故答案为50°.【点睛】本题考查了直角三角形两锐角互余的性质,熟练掌握是解题的关键.18、1.【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为1.【详解】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=1,∴D到OA的距离等于DE的长,即为1.故答案为:1.【点睛】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.三、解答题(共66分)19、(1),证明见解析;(2);(3)【分析】(1)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可;(2)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可;(3)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可.【详解】(1),证明:四边形是正方形,又,∴在和中,(2),理由是:四边形是正方形,又,∴在和中,∴EF=AF-AE=BE-DF(3),理由是:四边形是正方形,又,∴在和中,EF=AE-AF=DF-BE【点睛】本题考查的是三角形全等的判定和性质,掌握三角形的判定方法及能利用同角的余角相等证明是关键.20、(1)7;7.5;7(2)乙,理由见解析;(3)变小.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析;(3)根据方差公式即可求解判断.【详解】(1)甲的平均成绩a==7(环),甲的成绩的众数c=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、1、1、1、9、10,∴乙射击成绩的中位数b==7.5(环),故答案为7;7.5;7(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中1环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大;(3)乙再射击次,命中环,那么乙的射击成绩的方差为:×[(3−7)2+(4−7)2+(6−7)2+3×(7−7)2+3×(1−7)2+(9−7)2+(10−7)2]=×(16+9+1+3+4+9)≈3.1.故方差变小故答案为:变小.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.21、见解析【分析】先利用ASA证明△ABC≌△ADE,再根据全等三角形的性质即得结论.【详解】证明:∵∠1=∠2,∴∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE.【点睛】本题考查了全等三角形的判定和性质,属于基础题型,熟练掌握全等三角形的判定和性质是解答的关键.22、(1)见解析;(2)见解析【分析】(1)根据等腰三角形的性质和平移的性质,可得∠ABC=∠ACB=∠DCE=∠DEC,AB=AC=DC=DE,根据全等三角形的判定与性质,可得答案;(2)利用平行线的性质证得CG=CH,根据全等三角形的判定与性质,可得答案.【详解】(1)由平移,知△ABC≌△DCE,∵AB=AC=DC=DE,∴∠ABC=∠ACB=∠DCE=∠DEC,∴∠BCD=∠ECA,∴△ACE≌DCB(SAS),∴AE=BD;(2)∵GH∥BE,∴∠CHG=∠HCE=∠ACB=∠CGH,∴CG=CH,∵∠BCH=∠ECG,BC=CE,∴△BCH≌△ECG(SAS),∴BH=GE.【点睛】本题考查了全等三角形的判定与性质,平移的性质,平行线的性质,等腰三角形的性质,掌握全等三角形的判定与性质是解题的关键.23、见详解.【分析】根据角平分线定义,画出角平分线即可;【详解】解:如图:OC为所求.【点睛】本题考查了基本作图——作角平分线,解题的关键是正确作出已知角的角平分线.24、(1)见解析;(2)30°【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AC、AB于H、F,再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,再画射线AM交CB于D;
(2)先根据角平分线定义和等腰三角形的性质得:∠B=∠BAD=∠CAD,则∠B=30°.【详解】解:(1)如图所示:AD即为所求;(2)∵AD平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级经验分享会的开展计划
- 培养学生判断力与批判性思维计划
- 增强图书馆开放日活动效果计划
- 如何应对财务恐惧症计划
- 经理绩效目标规划计划
- 美术欣赏与文化传播课程大纲计划
- 幼儿心理健康关怀计划
- 2025年艺术表演场馆服务项目建议书
- 2025年高纯四氧化三锰项目合作计划书
- 2025年电子商务C2C项目合作计划书
- 特种设备及重要设备安全管理制度
- DB3502T052-2019 家政服务规范 家庭搬家
- 《自主神经系统》课件
- 2025集团公司内部借款合同范本
- 辽宁省名校联盟2025届高三上学期1月份联合考试语文试题(含答案)
- 2025年山西地质集团社会招聘高频重点提升(共500题)附带答案详解
- 2024-2025学年辽宁省沈阳市沈河区七年级(上)期末英语试卷(含答案)
- 前牙即刻种植的临床应用
- 2024-2025学年初中七年级上学期数学期末综合卷(人教版)含答案
- 体育活动策划与组织课件
- 公司违规违纪连带处罚制度模版(2篇)
评论
0/150
提交评论