山东省枣庄市滕州市达标名校2024届中考数学押题试卷含解析_第1页
山东省枣庄市滕州市达标名校2024届中考数学押题试卷含解析_第2页
山东省枣庄市滕州市达标名校2024届中考数学押题试卷含解析_第3页
山东省枣庄市滕州市达标名校2024届中考数学押题试卷含解析_第4页
山东省枣庄市滕州市达标名校2024届中考数学押题试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄市滕州市达标名校2024届中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A. B. C. D.π2.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A.30° B.60° C.120° D.180°3.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=04.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A. B.2 C. D.35.如图所示,,结论:①;②;③;④,其中正确的是有()A.1个 B.2个 C.3个 D.4个6.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定7.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A.ab=23 B.a8.若,则括号内的数是A. B. C.2 D.89.在实数,,,中,其中最小的实数是()A. B. C. D.10.计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是()A.5 B.﹣2 C.2 D.﹣1二、填空题(本大题共6个小题,每小题3分,共18分)11.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为______.百子回归12.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.13.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.14.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.15.(﹣12)﹣2﹣(3.14﹣π)016.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.三、解答题(共8题,共72分)17.(8分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?18.(8分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.19.(8分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20.(8分)已知:如图,在菱形中,点,,分别为,,的中点,连接,,,.求证:;当与满足什么关系时,四边形是正方形?请说明理由.21.(8分)(1)计算:;(2)解不等式组:22.(10分)计算:(π﹣3.14)0﹣2﹣|﹣3|.23.(12分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示.试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.24.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】试题解析:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′-S△ABC==.故选A.考点:1.扇形面积的计算;2.旋转的性质.2、C【解题分析】

求出正三角形的中心角即可得解【题目详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C.【题目点拨】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键3、D【解题分析】试题解析:含有两个未知数,不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.4、A【解题分析】

设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.【题目详解】设AC=a,则BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故选A.【题目点拨】本题主要考查特殊角的三角函数值.5、C【解题分析】

根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.【题目详解】解:如图:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正确)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正确)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.【题目点拨】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.6、C【解题分析】

首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与与圆相离.【题目详解】∵x2-4x-12=0,

(x+2)(x-6)=0,

解得:x1=-2(不合题意舍去),x2=6,

∵点O到直线l距离是方程x2-4x-12=0的一个根,即为6,

∴点O到直线l的距离d=6,r=5,

∴d>r,

∴直线l与圆相离.故选:C【题目点拨】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.7、B【解题分析】∵2a=3b,∴ab=3故选B.8、C【解题分析】

根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【题目详解】解:,

故选:C.【题目点拨】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.9、B【解题分析】

由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【题目详解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的实数为-2;

故选:B.【题目点拨】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.10、A【解题分析】试题分析:原式=1-(-3)+=1+3+1=5,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11、505【解题分析】

根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10,代入求解即可.【题目详解】1~100的总和为:=5050,

一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=5050÷10=505,故答案为505.【题目点拨】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案12、(x+1);.【解题分析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.13、【解题分析】

过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四边形EDFB=+=,即可得解:k=2S△OBF=.【题目详解】解:过点B作BF⊥OC于点F,由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=,∴S△OED=,S△OBF=S△OED+S四边形EDFB=+=,∴k=2S△OBF=.故答案为.【题目点拨】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.14、10%.【解题分析】

设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.【题目详解】设平均每次降价的百分率为,根据题意列方程得,,解得,(不符合题意,舍去),答:这个百分率是.故答案为.【题目点拨】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.15、3.【解题分析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.原式=4-1=3.考点:负整数指数幂;零指数幂.16、等【解题分析】

根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.【题目详解】解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,例如:.【题目点拨】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.三、解答题(共8题,共72分)17、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解题分析】

(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.

(2)根据平均数,中位数,众数的意义回答.【题目详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【题目点拨】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.18、见解析【解题分析】

证明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC和△DAE中,∵,∴△ABC≌△DAE(ASA).∴BC=AE.【题目点拨】根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.19、(1);(2).【解题分析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.试题解析:解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.考点:用列举法求概率.20、见解析【解题分析】

(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)证明△BCE≌△DCF即可;

(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.【题目详解】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【题目点拨】本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.21、(1);(2).【解题分析】

(1)根据幂的运算与实数的运算性质计算即可.(2)先整理为最简形式,再解每一个不等式,最后求其解集.【题目详解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式组的解集为【题目点拨】本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.22、﹣1.【解题分析】

本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【题目详解】原式=1﹣3+4﹣3,=﹣1.【题目点拨】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论