![四川省南充市名校2024届中考押题数学预测卷含解析_第1页](http://file4.renrendoc.com/view10/M03/2B/23/wKhkGWWHqwSAQk3YAAHfHhKjmF8734.jpg)
![四川省南充市名校2024届中考押题数学预测卷含解析_第2页](http://file4.renrendoc.com/view10/M03/2B/23/wKhkGWWHqwSAQk3YAAHfHhKjmF87342.jpg)
![四川省南充市名校2024届中考押题数学预测卷含解析_第3页](http://file4.renrendoc.com/view10/M03/2B/23/wKhkGWWHqwSAQk3YAAHfHhKjmF87343.jpg)
![四川省南充市名校2024届中考押题数学预测卷含解析_第4页](http://file4.renrendoc.com/view10/M03/2B/23/wKhkGWWHqwSAQk3YAAHfHhKjmF87344.jpg)
![四川省南充市名校2024届中考押题数学预测卷含解析_第5页](http://file4.renrendoc.com/view10/M03/2B/23/wKhkGWWHqwSAQk3YAAHfHhKjmF87345.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省南充市名校2024年中考押题数学预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差2.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为()A. B.π C. D.33.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A.1 B.3 C.0 D.1或34.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或15.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是().A. B. C. D.6.如图所示的工件,其俯视图是()A. B. C. D.7.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°8.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.9.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.810.下面的几何体中,主视图为圆的是()A. B. C. D.11.下列实数中,无理数是()A.3.14 B.1.01001 C. D.12.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80° B.80°或50° C.20° D.80°或20°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.要使分式有意义,则x的取值范围为_________.14.已知反比例函数的图像经过点(-2017,2018),当时,函数值y随自变量x的值增大而_________.(填“增大”或“减小”)15.若关于x的方程有两个相等的实数根,则m的值是_________.16.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____17.已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;;,c是关于x的一元二次方程的两个实数根;其中正确结论是______填写序号18.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.20.(6分)已知抛物线过点,,求抛物线的解析式,并求出抛物线的顶点坐标.21.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.23.(8分)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.24.(10分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.25.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)26.(12分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为时,四边形ADPB为菱形,当弧CD长为时,四边形ADCB为矩形.27.(12分)如图1,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα=角α的邻边角(1)如图1,若BC=3,AB=5,则ctanB=_____;(2)ctan60°=_____;(3)如图2,已知:△ABC中,∠B是锐角,ctanC=2,AB=10,BC=20,试求∠B的余弦cosB的值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.2、B【解题分析】∵四边形AECD是平行四边形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等边三角形,
∴∠B=60°,∴的弧长=.故选B.3、B【解题分析】
直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.【题目详解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.【题目点拨】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.4、D【解题分析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【题目详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【题目点拨】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.5、D【解题分析】设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.解:∵,..又∵过点,交于点,∴,∴,∴.故选D.6、B【解题分析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.7、A【解题分析】试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选A.考点:多边形内角与外角;三角形内角和定理.8、A【解题分析】
根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.【题目详解】根据在△ABC中,∠C=90°,那么sinB==,故答案选A.【题目点拨】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.9、C【解题分析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.10、C【解题分析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.11、C【解题分析】
先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【题目详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C.【题目点拨】本题主要考查无理数的定义,属于简单题.12、D【解题分析】
根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【题目详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【题目点拨】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x≠1【解题分析】由题意得x-1≠0,∴x≠1.故答案为x≠1.14、增大【解题分析】
根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性.【题目详解】∵反比例函数的图像经过点(-2017,2018),∴k=-2017×2018<0,∴当x>0时,y随x的增大而增大.故答案为增大.15、m=-【解题分析】
根据题意可以得到△=0,从而可以求得m的值.【题目详解】∵关于x的方程有两个相等的实数根,∴△=,解得:.故答案为.16、【解题分析】
分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【题目详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入数据求得CF=故答案为【题目点拨】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质17、①③【解题分析】试题解析:∵抛物线开口向上且经过点(1,1),双曲线经过点(a,bc),∴,∴bc>0,故①正确;∴a>1时,则b、c均小于0,此时b+c<0,当a=1时,b+c=0,则与题意矛盾,当0<a<1时,则b、c均大于0,此时b+c>0,故②错误;∴可以转化为:,得x=b或x=c,故③正确;∵b,c是关于x的一元二次方程的两个实数根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,当a>1时,2a﹣1>3,当0<a<1时,﹣1<2a﹣1<3,故④错误;故答案为①③.18、4【解题分析】
当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.【题目详解】当CD∥AB时,PM长最大,连接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,∵⊙O直径AB=8,∴半径OC=4,即PM=4.【题目点拨】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)详见解析;(2)10.【解题分析】
①只需证明两对对应角分别相等可得两个三角形相似;故.
②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.【题目详解】①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°−∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP与△PDA的面积比为1:4,∴OCPD=OPPA=CPDA=14−−√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.设OP=x,则OB=x,CO=8−x.在△PCO中,∵∠C=90∘,CP=4,OP=x,CO=8−x,∴x2=(8−x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB的长为10.【题目点拨】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.20、y=+2x;(-1,-1).【解题分析】试题分析:首先将两点代入解析式列出关于b和c的二元一次方程组,然后求出b和c的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:将点(0,0)和(1,3)代入解析式得:解得:∴抛物线的解析式为y=+2x∴y=+2x=-1∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.21、(1)(2).【解题分析】
(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,(乙投放的垃圾恰有一袋与甲投放的垃圾是同类).即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.22、证明见解析.【解题分析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【题目详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【题目点拨】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.23、(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解题分析】
(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;(2)分当B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;(3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD•PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.【题目详解】(1)解:(1)连接BC,∵AB是直径,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂线,∴CP=CB=CA,(3)①(Ⅰ)如图2,当B在PA的中垂线上,且P在右时,∠ACD=15°;(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°②(Ⅰ)如图6,,.(Ⅱ)如图7,,,.,.,,,.设BD=9k,PD=2k,,,,.【题目点拨】本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.24、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解题分析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【题目详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:方案A品牌(块)B品牌(块)①4852②4951③5050(3)∵140>0,∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【题目点拨】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.25、(1);(2);(3)第一题.【解题分析】
(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.【题目详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国陶瓷铸造砂行业投资前景分析、未来发展趋势研究报告
- 2024年12月金华事业单位公开招聘武义县社会福利院公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 夏季保健课件
- 《时尚北京》杂志2023年第5期
- 《颅脑损伤的护理》课件
- 《Ch全面质量》课件
- 2025至2031年中国彩色石英玻璃管液位计行业投资前景及策略咨询研究报告
- 2025至2031年中国妇幼卫生用品行业投资前景及策略咨询研究报告
- 2025至2031年中国单密码门禁控制器行业投资前景及策略咨询研究报告
- 2025至2030年中国浮油脂肪酸数据监测研究报告
- DB32∕T 2948-2016 水利工程卷扬式启闭机检修技术规程
- 2023届高考复习之文学类文本阅读训练
- 建筑施工图设计教程
- 高中化学必修一复习提纲
- 皮带输送机检修及维护
- 压力容器设计综合知识要点 (1)
- 工程款支付报审表
- 同位角内错角同旁内角专项练习题有答案
- 常用抗凝药物的应用及护理PPT课件
- 浅谈压力容器产品监督检验工作要点
- 食品分析实验讲义(1)
评论
0/150
提交评论