2024届湖北省武汉二中学广雅中学数学八上期末联考模拟试题含解析_第1页
2024届湖北省武汉二中学广雅中学数学八上期末联考模拟试题含解析_第2页
2024届湖北省武汉二中学广雅中学数学八上期末联考模拟试题含解析_第3页
2024届湖北省武汉二中学广雅中学数学八上期末联考模拟试题含解析_第4页
2024届湖北省武汉二中学广雅中学数学八上期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉二中学广雅中学数学八上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在中,,,平分,、分别是、上的动点,当最小时,的度数为()A. B. C. D.2.若等腰三角形的两边长分别是2和6,则这个三角形的周长是()A.14 B.10 C.14或10 D.以上都不对3.如图,,,,下列条件中不能判断的是()A. B. C. D.4.下列运算正确()A.a•a5=a5 B.a7÷a5=a3C.(2a)3=6a3 D.10ab3÷(﹣5ab)=﹣2b25.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4 B.7,24,25 C.8,12,20 D.5,13,156.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是(

)A.

B.

C.

D.7.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A. B.C. D.8.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A. B. C. D.9.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10-5C.0.75×10-4D.75×10-610.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:捐款(元)51015202530人数361111136问该班同学捐款金额的众数和中位数分别是()A.13,11 B.25,30 C.20,25 D.25,20二、填空题(每小题3分,共24分)11.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).12.如图,在△ABC中,AB和AC的垂直平分线分别交BC于E、F,若∠BAC=130°,则∠EAF=________.13.某销售人员一周的销售业绩如下表所示,这组数据的中位数是__________.14.一个正数的平方根分别是和,则__.15.将长为20cm、宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x之间的关系式为_______.16.已知等腰的两边长分别为3和5,则等腰的周长为_________.17.已知,,那么_________.18.如图,点B,A,D,E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF则需要添加一个适当的条件是______三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,点,点,直线交轴于点.(1)求直线的表达式和点的坐标;(2)在直线上有一点,使得的面积为4,求点的坐标.20.(6分)某校图书室计划购进甲乙两种图书,已知购买一本甲种图书比购买一本乙种图书多元,若用元购买甲种图书和用元购买乙种图书,则购买甲种图书的本数是购买乙种图书本数的一半.(1)求购买一本甲种图书、一本乙种图书各需要多少元?(2)经过商谈,书店决定给予优惠,即购买一本甲种图书就赠送一本乙种图书,如果该校图书室计划购进乙种图书的本数是甲种图书本数的倍还多本,且购买甲乙两种图书的总费用不超过元,那么最多可购买多少本甲种图书?21.(6分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.22.(8分)化简:.23.(8分)教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.1.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线是线段的垂直平分线,是上任一点,连结.将线段沿直线对折,我们发现与完全重合.由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段两端的距离相等.已知:如图,垂足为点,点是直线上的任意一点.求证:.分析图中有两个直角三角形和,只要证明这两个三角形全等,便可证得.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在中,直线分别是边的垂直平分线,直线m、n交于点,过点作于点.求证:.(1)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点.若,则的长为__________.24.(8分)一群女生住间宿舍,每间住4人,剩下18人无房住,每间住6人,有一间宿舍住不满,但有学生住.(1)用含的代数式表示女生人数.(2)根据题意,列出关于的不等式组,并求不等式组的解集.(3)根据(2)的结论,问一共可能有多少间宿舍,多少名女生?25.(10分)在如图所示的平面直角坐标系中,描出点A(3,2)和点B(-1,4).(1)求点A(3,2)关于x轴的对称点C的坐标;(2)计算线段BC的长度.26.(10分)已知,如图,和都是等边三角形,且点在上.(1)求证:(2)直接写出和之间的关系;

参考答案一、选择题(每小题3分,共30分)1、B【分析】在AC上截取AE=AN,先证明△AME≌△AMN(SAS),推出ME=MN.当B、M、E共线,BE⊥AC时,BM+ME最小,可求出∠NME的度数,从而求出∠BMN的度数.【详解】如图,在AC上截取AE=AN,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME,当B、M、E共线,BE⊥AC时,BM+ME最小,∴MN⊥AB∵∠BAC=68°∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,∴∠BMN=180°-112°=68°.故选:B.【点睛】本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN进行转化,利用垂线段最短解决问题.2、A【分析】分腰长为2和腰长为6两种情况,结合三角形三边关系进行讨论即可求得答案.【详解】①若2为腰,2+2<6不能构成三角形;②若6为腰,满足构成三角形的条件,则周长为6+6+2=1.故选A.3、B【分析】先证明∠A=∠D,然后根据全等三角形的判定方法逐项分析即可.【详解】解:如图,延长BA交EF与H.∵AB∥DE,∴∠A=∠1,∵AC∥DF,∴∠D=∠1,∴∠A=∠D.A.在△ABC和△DEF中,∵AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS),故A不符合题意;B.EF=BC,无法证明△ABC≌△DEF(ASS);故B符合题意;C.在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAS),故C不符合题意;D.∵EF∥BC,∴∠B=∠2,∵AB∥DE,∴∠E=∠2,∴∠B=∠E,在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAD),故D不符合题意;故选B.【点睛】本题主要考查了平行线的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等.4、D【解析】选项A,原式=;选项B,原式=;选项C,原式=;选项D,原式=.故选D.5、B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.6、D【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:根据题意可知,故答案为:D.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7、B【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间-实际所用时间=2,列出方程即可.【详解】设原计划每天施工x米,则实际每天施工(x+50)米,

根据题意,可列方程:=2,

故选B.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是读懂题意,找出合适的等量关系,列出方程.8、B【分析】根据轴对称图形的概念求解即可.【详解】A.不是轴对称图形,本选项错误;B.是轴对称图形,本选项正确;C.不是轴对称图形,本选项错误;D.不是轴对称图形,本选项错误.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000075=7.5×10-5.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、D【分析】根据众数和中位数的定义即可得到结果.【详解】解:∵25是这组数据中出现次数最多的数据,∴25是这组数据的众数;∵已知数据是由小到大的顺序排列,第25个和第26个数都是1,∴这组数据的中位数为1.故选D.【点睛】本题考查的是众数和中位数,熟练掌握基本概念是解题的关键.二、填空题(每小题3分,共24分)11、真命题【分析】根据三角形内角和为180°进行判断即可.【详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【点睛】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.12、80°【解析】由在△ABC中,AB和AC的垂直平分线分别交BC于E、F,易得∠B=∠BAE,∠C=∠CAF,又由∠BAC=130°,可求得∠B+∠C的度数,继而求得答案.【详解】∵在△ABC中,AB和AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=130°,∴∠B+∠C=180°-∠BAC=50°,∴∠BAE+∠CAF=50°,∴∠EAF=∠BAC-(∠BAE+∠CAF)=130°-50°=80°.故答案为:80°.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意掌握整体思想的应用是解此题的关键.13、1【分析】将数据从小到大排列,然后根据中位数的定义求解.【详解】解:将数据从小到大排列为:40,70,70,1,100,150,200,∴这组数据的中位数是1,故答案为:1.【点睛】本题考查中位数的求法:给定n个数据,按从小到大(或从大到小)排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,一定存在中位数,但中位数不一定是这组数据里的数.14、1.【分析】根据正数的两个平方根互为相反数可得关于x的方程,解方程即可得.【详解】根据题意可得:x+1+x﹣5=0,解得:x=1,故答案为1.【点睛】本题主要考查了平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.15、y=17x+1【分析】由图可知,将x张这样的白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽,把相关数据代入化简即可得到所求关系式.【详解】解:由题意可得:y=20x-1(x-1)=17x+1,即:y与x间的函数关系式为:y=17x+1.故答案为:y=17x+1.【点睛】观察图形,结合题意得到:“白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽”是解答本题的关键.16、11或1【分析】根据等腰三角形的定义,分两种情况:腰为3,底为5;腰为5,底为3,然后用三角形三边关系验证一下即可.【详解】当腰为3,底为5,三角形三边为3,3,5,满足三角形三边关系,此时三角形的周长为;当腰为5,底为3,三角形三边为5,5,3,满足三角形三边关系,此时三角形的周长为;综上所述,等腰的周长为11或1.故答案为:11或1.【点睛】本题主要考查等腰三角形的定义,分情况讨论是解题的关键.17、1【分析】先逆用积的乘方运算得出,再代入解答即可.【详解】因为,所以,

则,

故答案为:1.【点睛】本题考查了积的乘方,逆用性质把原式转化为是解决本题的关键.18、答案不唯一,如:BC=EF或∠BAC=∠EDF.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【详解】若添加BC=EF.∵BC∥EF,∴∠B=∠E.∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED.在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF.∵BC∥EF,∴∠B=∠E.∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED.在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).故答案为答案不唯一,如:BC=EF或∠BAC=∠EDF.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解答本题的关键.三、解答题(共66分)19、(1);;(2)【分析】(1)首先设直线AB的解析式为,然后将A、B两点坐标代入,即可得出解析式;当时,即可得出点C的坐标;(2)首先根据点A和O的坐标求出直线OA的解析式,然后分第一象限和第三象限设点P坐标,利用△BCP的面积构建方程即可得解.【详解】(1)设直线AB的解析式为将点,点代入解析式,得解得直线AB的解析式为当时,∴点C的坐标为(2)∵∴直线OA解析式为当P在第一象限时,设点P的坐标为,如图所示:由题意,得∵OB=4,OC=∴与在第一象限矛盾,故舍去;当P在第三象限时,设点P的坐标为,如图所示:由题意,得∴∴∴点P的坐标是.【点睛】此题主要考查平面直角坐标系与一次函数的综合应用以及坐标的求解,解题关键是求出直线解析式构建方程.20、(1)购买一本甲种图书元,购买一本乙种图书需要元;(2)该校最多可以购买本甲种图书【分析】(1)设购买一本甲种图书需要元,则购买一本乙种图书需要元,根据题意,列出分式方程,求解即可;(2)设该校可以购买本甲种图书,根据题意列出一元一次不等式即可求出结论.【详解】解:(1)设购买一本甲种图书需要元,则购买一本乙种图书需要元,根据题意得:解得:经检验:是分式方程的解且符合题意,答:购买一本甲种图书元,购买一本乙种图书需要元.(2)设该校可以购买本甲种图书根据题意得:解得取整数,最大为答:该校最多可以购买本甲种图书.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.21、(1)证明见解析;(2).【解析】试题分析:(1)根据等边三角形的性质根据SAS即可证明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.试题解析:(1)∵△ABC为等边三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.22、【分析】根据分式的混合运算法则即可求解.【详解】======.【点睛】此题主要考查分式的运算,解题的关键是熟知其运算法则.23、证明见解析;(1)证明见解析;(1)2.【分析】定理证明:根据垂直的定义可得∠PAC=∠PCB=90°,利用SAS可证明△PAC≌△PBC,根据全等三角形的性质即可得出PA=PB;(1)如图,连结,根据垂直平分线的性质可得OB=OC,OA=OC,即可得出OA=OB,根据等腰三角形“三线合一”的性质可得AH=BH;(1)如图,连接BD、BE,根据等腰三角形的性质可得出∠A=∠C=30°,根据垂直平分线的性质可得AD=BD,CE=BE,根据等腰三角形的性质及外角的性质可证明三角形BDE是等边三角形,可得DE=AC,即可得答案.【详解】定理证明:,∴∠PAC=∠PCB=90°,,..(1)如图,连结.∵直线m、n分别是边的垂直平分线,..,.(1)如图,连接BD、BE,∵∠ABC=110°,AB=BC,∴∠A=∠C=30°,∵边的垂直平分线交于点,边的垂直平分线交于点,∴AD=BD,CE=BE,∴∠A=∠ABD,∠C=∠CBE,∴∠BDE=1∠A=20°,∠BED=1∠C=20°,∴∠DBE=20°∴△BDE是等边三角形,∴DE=BD=BE=AD=CE,∴DE=AC∵AC=18,∴DE=2故答案为:2.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.24、(1)人;(2);(3)可能有10间宿舍,女生58人,或者11间宿舍女生62人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论