下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年江西省萍乡市高职录取数学摸底卷四(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.与y=sinx相等的是()
A.y=cos(x+Π)B.y=cos(x-Π)C.y=cos(Π/2-x)D.y=cos(Π/2+x)
2.已知向量a=(2,1),b=(3,5),则|2a一b|=
A.2B.√10C.√5D.2√2
3.若函数f(x)=3x²+bx-1(b∈R)是偶函数,则f(-1)=()
A.4B.-4C.2D.-2
4.下列幂函数中过点(0,0),(1,1)的偶函数是()
A.y=x^(1/2)B.y=x^4C.y=x^(-2)D.y=x^(1/3)
5.在△ABC中,内角A,B满足sinAsinB=cosAcosB,则△ABC是()
A.等边三角形B.钝角三角形C.非等边锐角三角形D.直角三角形
6.双曲线(x²/17)-(y²/8)=1的右焦点的坐标为()
A.(0,5)B.(0,-5)C.(5,0)D.(-5,0)
7.下列函数中既是奇函数又是增函数的是()
A.y=2xB.y=2xC.y=x²/2D.y=-x/3
8.若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=()
A.4B.3C.2D.0
9.函数f(x)=ln(2-x)的定义域是()
A.[-2,2]B.(-2,2)C.(-∞,2)D.(-2,+∞)
10.不等式(x²-4x−5)(x²+8)<0的解集是()
A.{x|-1<x<5}
B.{x|x<-1或x>5}
C.{x|0<x<5}
D.{x|−1<x<0}
二、填空题(4题)11.某球的表面积为36Πcm²,则球的半径是________cm
12.将一个容量为m的样本分成3组,已知第一组的频数为8,第2、3组的频率为0.15和0.45,则m=________。
13..已知数据x₁,x₂,……x₂₀的平均数为18,则数据x₁+2,,x₂+2,x₂₀+2的平均数是______。
14.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。
三、计算题(2题)15.已知sinα=1/3,则cos2α=________。
16.求函数y=cos²x+sinxcosx-1/2的最大值。
参考答案
1.C[解析]讲解:考察诱导公式,“奇变偶不变,符号看象限”,A,B为余弦,C,D为正弦,只有C是正的,选C
2.B
3.C
4.B[解析]讲解:函数图像的考察,首先验证是否过两点,C定义域不含x=0,因为分母有自变量,然后验证偶函数,A选项定义域没有关于原点对称,D选项可以验证是奇函数,答案选B。
5.D
6.C
7.Ay=2x既是增函数又是奇函数;y=1/x既是减函数又是奇函数;y=1/2x²是偶函数,且在(-∞,0)上为减函数,在[0,+∞)上为增函数;y=-x/3既是减函数又是奇函数,故选A.考点:函数的奇偶性.感悟提高:对常见的一次函数、二次函数、反比例函数,可根据图像的特点判断其单调性;对于函数的奇偶性,则可依据其定义来判断。首先看函数的定义域是否关于原点对称,如果定义域不关于原点对称,则函数不具有奇偶性;如果定义域关于原点对称,再判断f(-x)=f(x)(偶函数);f(-x)=-f(x)(奇函数)
8.D
9.C
10.A[解析]讲解:一元二次不等式的考察,由于括号内x²+8始终是大于0的,所以整体的正负是由前一个括号控制的,所以等价于x²-4x−5<0,解得1<x<5
11.3
12.20
13.20
14.(x-2)²+(y+1)²=8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学年广东信宜市高二语文(上)期中考试卷及答案解析
- 2024年三年级少先队工作计划样本(5篇)
- 2024版粉煤灰运输与销售联合合同3篇
- 2024年度软件开发许可使用合同
- 2024年度管道铺设焊接工程项目合同2篇
- 洗浴保安合同模板
- 2024雏鸡繁育基地建设合同
- 2024个人借款抵押合同范本民间汽车抵押借款合同范本
- 矿山车运输合同范例
- 圆盘粉碎机的安全操作规程(3篇)
- MOOC 以案说法-中南财经政法大学 中国大学慕课答案
- 黑龙江省齐齐哈尔市依安县等4地2023-2024学年九年级上学期期末历史试题
- 2024年应急救护知识考试题库300题(含答案)
- 中国电信未来五年信息化发展规划方案出台
- 15《真理诞生于一百个问号之后》课件
- 在线网课知慧《大凉山精准脱贫(西昌学院)》单元测试考核答案
- 安全评价通则AQ8001-2007
- 工业物联网理论知识试题
- 激光器技术发展与应用前景
- 公车拍卖拍卖服务整体设想及策划
- 清廉学校建设工作PPT
评论
0/150
提交评论