建筑模型外文翻译文献_第1页
建筑模型外文翻译文献_第2页
建筑模型外文翻译文献_第3页
建筑模型外文翻译文献_第4页
建筑模型外文翻译文献_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

外文翻译PAGEPAGE1建筑模型外文翻译文献建筑模型外文翻译文献(文档含中英文对照即英文原文和中文翻译)原文:LateralstiffnessestimationinframesanditsimplementationtocontinuummodelsforlinearandnonlinearstaticanalysisAbstractContinuummodelisausefultoolforapproximateanalysisoftallstructuresincludingmoment-resistingframesandshearwall-framesystems.Incontinuummodel,discretebuildingsaresimplifiedsuchthattheiroverallbehaviorisdescribedthroughthecontributionsofflexuralandshearstiffnessesatthestorylevels.Therefore,accuratedeterminationoftheselateralstiffnesscomponentsconstitutesoneofthemajorissuesinestablishingreliablecontinuummodelseveniftheproposedsolutionisanapproximationtoactualstructuralbehavior.Thisstudyfirstexaminesthepreviousliteratureonthecalculationoflateralstiffnesscomponents(i.e.flexuralandshearstiffnesses)throughcomparisonswithexactresultsobtainedfromdiscretemodels.Anewmethodologyforadaptingtheheightwisevariationoflateralstiffnesstocontinuummodelispresentedbasedonthesecomparisons.Theproposedmethodologyisthenextendedforestimatingthenonlinearglobalcapacityofmomentresistingframes.Theverificationsthatcomparethenonlinearbehaviorofrealsystemswiththoseestimatedfromtheproposedproceduresuggestitseffectiveusefortheperformanceassessmentoflargebuildingstocksthatexhibitsimilarstructuralfeatures.Thisconclusionisfurtherjustifiedbycomparingnonlinearresponsehistoryanalysesofsingle-degree-of-freedom(sdof)systemsthatareobtainedfromtheglobalcapacitycurvesofactualsystemsandtheirapproximationscomputedbytheproposedprocedure.KeywordsApproximatenonlinearmethods·Continuummodel·Globalcapacity·Nonlinearresponse·Framesanddualsystems1IntroductionReliableestimationofstructuralresponseisessentialintheseismicperformanceassessmentanddesignbecauseitprovidesthemajorinputwhiledescribingtheglobalcapacityofstructuresunderstronggroundmotions.Withtheadventofcomputertechnologyandsophisticatedstructuralanalysisprograms,theanalystsarenowabletorefinetheirstructuralmodelstocomputemoreaccuratestructuralresponse.However,attheexpenseofcapturingdetailedstructuralbehavior,theincreasedunknownsinmodelingparameters,whencombinedwiththeuncertaintyingroundmotions,maketheinterpretationsofanalysisresultscumbersomeandtimeconsuming.Complexstructuralmodelingandresponsehistoryanalysiscanalsobeoverwhelmingforperformanceassessmentoflargebuildingstocksorthepreliminarydesignofnewbuildings.Thecontinuummodel,inthissense,isanaccomplishedapproximatetoolforestimatingtheoveralldynamicbehaviorofmomentresistingframes(MRFs)andshearwall-frame(dual)systems.Continuummodel,asanapproximationtocomplexdiscretemodels,hasbeenusedextensivelyintheliterature.Westergaard(1933)usedequivalentundampedshearbeamconceptformodelingtallbuildingsunderearthquakeinducedshocksthroughtheimplementationofshearwavespropagatinginthecontinuummedia.Later,thecontinuousshearbeammodelhasbeenimplementedbymanyresearchers(e.g.Iwan1997;GülkanandAkkar2002;Akkaretal.2005;ChopraandChintanapakdee2001)toapproximatetheearthquakeinduceddeformationdemandsonframesystems.TheideaofusingequivalentshearbeamswasextendedtothecombinationofcontinuousshearandflexuralbeamsbyKhanandSbarounis(1964).HeidebrechtandStaffordSmith(1973)definedacontinuummodel(hereinafterHS73)forapproximatingtallshearwall-frametypestructuresthatisbasedonthesolutionofafourthorderpartialdifferentialequation(PDE).Miranda(1999)presentedthesolutionofthisPDEunderasetoflateralstaticloadingcasestoapproximatethemaximumroofandinterstorydriftdemandsonfirst-modedominantstructures.Later,HeidebrechtandRutenberg(2000)showedadifferentversionofHS73methodtodrawtheupperandlowerboundsofinterstorydriftdemandsonframesystems.MirandaandTaghavi(2005)usedtheHS73modeltoacquiretheapproximatestructuralbehaviorupto3modes.Asafollowupstudy,MirandaandAkkar(2006)extendedtheuseofHS73tocomputegeneralizeddriftspectrumwithhighermodeeffects.Continuummodelisalsousedforestimatingthefundamentalperiodsofhigh-risebuildings(e.g.DymandWilliams2007).Morerecently,Gengshuetal.(2008)studiedthesecondorderandbucklingeffectsonbuildingsthroughtheclosedformsolutionsofcontinuoussystems.Whilethetheoreticalapplicationsofcontinuummodelareabundantasbrieflyaddressedabove,itspracticalimplementationisratherlimitedasthedeterminationofequivalentflexural(EI)andshear(GA)stiffnessestorepresenttheactuallateralstiffnessvariationindiscretesystemshavenotbeenfullyaddressedintheliterature.ThisflawhasalsorestrictedtheefficientuseofcontinuummodelbeyondelasticlimitsbecausethenonlinearbehaviorofcontinuummodelsisdictatedbythechangesinEIandGAinthepost-yieldingstageThispaperfocusesontherealisticdeterminationoflateralstiffnessforcontinuummodels.EIandGAdefinedindiscretesystemsareadaptedtocontinuummodelsthroughananalyticalexpressionthatconsiderstheheightwisevariationofboundaryconditionsindiscretesystems.TheHS73modelisusedasthebasecontinuummodelsinceitiscapableofrepresentingthestructuralresponsebetweenpureflexureandshearbehavior.Theproposedanalyticalexpressionisevaluatedbycomparingthedeformationpatternsofcontinuummodelandactualdiscretesystemsunderthefirst-modecompatibleloadingpattern.TheimprovementsonthedeterminationofEIandGAarecombinedwithasecondprocedurethatisbasedonlimitstateanalysistodescribetheglobalcapacityofstructuresrespondingbeyondtheirelasticlimits.Illustrativecasestudiesindicatethatthecontinuummodel,whenusedtogetherwiththeproposedmethodologies,canbeausefultoolforlinearandnonlinearstaticanalysis.2ContinuummodelcharacteristicsTheHS73modeliscomposedofaflexuralandshearbeamtodefinetheflexural(EI)andshear(GA)stiffnesscontributionstotheoveralllateralstiffness.ThemajormodelparametersEIandGAarerelatedtoeachotherthroughthecoefficientα(Eq.1).Asαgoestoinfinitythemodelwouldexhibitpuresheardeformationwhereasα=0indicatespureflexuraldeformation.NotethatitisessentialtoidentifythestructuralmembersofdiscretebuildingsfortheirflexuralandshearbeamcontributionsbecausetheoverallbehaviorofcontinuummodelisgovernedbythechangesinEIandGA.Equation2showsthecomputationofGAforasinglecolumnmemberinHS73.ThevariablesIcandhdenotethecolumnmomentofinertiaandstoryheight,respectively.TheinertiatermsIb1andIb2thataredividedbythetotallengthsl1andl2,respectively,definetherelativerigiditiesofbeamsadjoiningtothecolumnfromtop(seeFig.3inthereferredpaper).Equation2indicatesthatGA(shearcomponentoftotallateralstiffness)iscomputedasafractionofflexuralstiffnessofframesorientedinthelateralloadingdirection.Accordingly,theflexuralpart(EI)oftotalstiffnessiscomputedeitherbyconsideringtheshear-wallmembersintheloadingdirectionand/orothercolumnsthatdonotspanintoaframeinthedirectionofloading.Thisassumptionworksfairlywellfordualsystems.However,itmayfailinMRFsbecauseitwilldiscardtheflexuralcontributionsofcolumnsalongtheloadingdirectionandwilllumptotallateralstiffnessintoGA.Essentially,thisapproximationwillreducetheentireMRFtoashearbeamthatwouldbeaninaccuratewayofdescribingMRFbehaviorunlessallbeamsareassumedtoberigid.Tothebestofauthors’knowledge,studiesthatuseHS73modeldonotdescribethecomputationofαindepthwhilerepresentingdiscretebuildingsystemsascontinuummodels.Inmostcasesthesestudiesassigngenericαvaluesfordescribingdifferentstructuralbehaviorspanningfrompureflexuretopureshear1.Thisapproachisdeemedtoberationaltorepresenttheoreticalbehaviorofdifferentstructures.However,theabovehighlightedfactsaboutthecomputationoflateralstiffnessrequirefurtherinvestigationtoimprovetheperformanceofHS73modelwhilesimplifyinganactualMRFasacontinuummodel.Inthatsense,itisworthwhiletodiscusssomeimportantstudiesonthelateralstiffnessestimationofframes.ThesecouldbeusefulfortheenhancedcalculationsofEIandGAtodescribethetotallateralstiffnessincontinuumsystems.3LateralstiffnessapproximationsforMRFsTherearenumerousstudiesonthedeterminationoflateralstiffnessinMRFs.ThemethodsproposedinMuto(1974)andHosseiniandImagh-e-Naiini(1999)(hereinafterM74andHI99,respectively)arepresentedinthispaperandtheyarecomparedwiththeHS73approachforitsenhancementindescribingthelateraldeformationbehaviorofstructuralsystems.Equation3showsthetotallateralstiffness,k,definitionofM74foracolumnatanintermediatestory.TheparametersIc,h,Ib1,Ib2,l1andl2havethesamemeaningsasinEq.(2).NotethatEq.(2)proposedinHS73isasimplifiedversionofEq.(3)foraunitrotation.Theformerexpressionassumesthatthedimensionsofbeamsspanningintothecolumnfromtoparethesameasthosespanningintothecolumnfrombottom.However,Eqs.(2)and(3)exhibitasignificantconceptualdifference:theHS73approachinterpretstheresultingstiffnesstermastheshearcontributionwhereasM74considersitasthetotallateralstiffness.TheHI99methoddefinesthelateralstiffnessofMRFsthroughanequivalentsimplesystemthatconsistsofsub-modulesofone-bay/one-storyframes.Eachsub-modulerepresentsastoryintheoriginalstructureandthecolumninertia(Ic)ofasub-moduleiscalculatedbytakinghalfofthetotalmomentofinertiaofallcolumnsintheoriginalstory.Therelativerigiditiesofupper(ku)andlower(kl)beamsinasub-modulearecalculatedbysummingalltherelativebeamrigiditiesatthetopandbottomoftheoriginalstory,respectively.ThetotallateralstiffnessofastorybyHI99isgiveninEq.(5)Theparameterkcandhdenotetherelativerigidityandlengthofthecolumninthesubmodule,respectively.Thetotallateralstiffnessatgroundstoryiscomputedbyassigningrelativelylargestiffnessvaluestokltorepresentthefixed-baseconditions.Equation(5)hasasimilarfunctionalformatasEqs.(2)and(3).Sincethelateralstiffnesscomputedstandsforthetotallateralstiffness,itexhibitsamoresimilartheoreticalframeworktoM74.DiscussionspresentedaboveindicatethatbothM74andHI99considerthevariationsinlateralstiffnessatthegroundstoryduetofixed-baseboundaryconditions.However,theyignorethefreeendconditionsatthetopstory.Asamatteroffact,Schultz(1992)pointedthatlateralstiffnesschangesalongthebuildingheightmightbeabruptatboundarystories.TheboundarystoriesdefinedbySchultz(1992)notonlyconsistofgroundandtopfloorsbutalsothe2ndstorybecausethepropagationoffixed-baseconditionsabovethegroundstorylevelisprominentatthe2ndstoryaswell.AlthoughSchultz(1992)proposedcorrectionfactorsforboundarystoriesofsomespecificcases,hedoesnotgiveageneralexpressionthataccountsforthestiffnesschangesatboundarystories.References1、AkkarS,YazganU,GülkanP(2005)Driftestimatesinframebuildingssubjectedtonear-faultgroundmotions.JStructEngASCE131(7):1014–10242、AmericanSocietyofCivilEngineers(ASCE)(2007)Seismicrehabilitationofexistingbuildings:ASCEstandard,reportno.ASCE/SEI41-06.Reston,Virginia3、AppliedTechnologyCouncil(ATC)(2004)FEMA-440Improvementofnonlinearstaticseismicanalysisprocedures,ATC-55projectreport.preparedbytheAppliedTechnologyCouncilfortheFeeralEmergencyManagementAgency,Washington,DC4、BlumeJA(1968)Dynamiccharacteristicsofmulti-storybuildings.JStructDivASCE94(2):377–4025、BorziB,PinhoR,CrowleyH(2008)Simplifiedpushover-basedvulnerabilityanalysisforlarge-scaleassessmentofRCbuildings.EngStruct30:804–820翻译:框架横向刚度估计和横向刚度线性与非线性的连续模型的静力分析吐哈埃尔奥卢•思南阿卡尔收到日期:2010年4月23日/发表日期:2010年11月17日©施普林格科学商业媒体B.V.2010+摘要:连续模型是高层结构的近似分析,包括抗弯框架剪力墙系统都是非常有用的工具。在连续介质模型,离散的建筑物被简化,这样他们的整体性能可以通过楼层层面的弯曲和剪切刚度来描述。因此,这些组件横向刚度的准确测定,是建立可靠的连续模型的主要问题之一,即提出的解决方案是一个实际的近似结构。本研究首先探讨通过与精确结果的比较,通过对横向刚度组件(即弯曲和剪切刚度)以往文献的计算来获得离散模型。基于这些比较,一种适用于横向刚度连续模型变化的新方法被提出来。建议的方法是进行延伸来估计非线性抗弯矩框架的整体能力。该核查是比较与建议的过程,而估计的实际系统的非线性特性表明其对大型建筑表现出类似的结构特征,并被有效利用。这一结论是通过比较,来进一步说明单自由度的非线性特性历史分析(单自由度),它们从实际系统和拟议的程序的近似计算来得到系统的整体能力曲线。关键词:近似非线性方法、连续模型、整体能力、非线性特性、框架和双系统吐哈埃尔奥卢目前留在中东技术大学研究生学院。介绍结构特性的可靠估计是抗震性能评估和设计必不可少,因为它提供主要数据在描述在强地震时结构的整体能力。随着计算机技术和先进的结构分析程序的出现,分析家现在能够改进其结构模型来计算更准确的结构反应。然而,在捕捉详细的结构性能为前提,模型参数未知的增加与地面运动相结合的不确定性,会使分析结果繁琐与解释费时。复杂的结构模型和反应历史分析,也可用于大型建筑群性能评估或新建筑物的初步设计的确定。连续模型,在这个意义上,是估计抗弯矩框架(MRFs)和剪力墙框架(dual)系统近似整体动态反应的工具。连续模型,近似的作为一种复杂的离散模型,已被广泛使用在文献中。Westergaard(1933)是用于地震引起的冲击下,高层建筑模型通过连续介质传播横波方式的等效阻尼剪切梁的概念。后来,连续剪切梁模型由许多研究者实现了(如伊万1997年古坎和阿卡尔2002;阿卡尔等人,2005年。普拉和柴可珀达2001)模拟地震引起的变形对框架体系的作用。可翰和贝冉斯(1964)采用等效剪切梁的理念扩展到连续剪切和弯曲梁的组合。黑布瑞去和斯塔福德史密斯(1973)所界定连续的结构模型(以下简称HS73),是用一个四阶偏微分方程(PDE)来解决高层剪力墙框架模型,虽然连续介质模型的理论应用建立在简要讨论上,其实际执行情况是相当有限,因为等效弯曲测定和剪刚度测定,代表的实际离散系统横向刚度变化在文献里没有得到充分处理。这一缺陷也限制了,因为超出弹性极限的非线性行为的连续模型的有效利用,连续模型是取决于在后阶段EI和GA的变化。本文的重点是横向刚度连续模型的定义。EI和GA在离散系统中的定义,是边界条件下离散系统的变化模型的解析表达式。该HS73模型作为基础连续模型,是因为它表现了纯弯曲和剪切行为,能代表结构反应的能力。建议的解析表达式是通过比较在第一个模式兼容加载模式下的,连续模型和实际离散系统的变形模式。在EI和GA测定的改善,在结合了第二个过程的极限状态分析的基础上,描述了结构承载超出其弹性极限后的整体能力。说明案例研究表明,连续模型,使用时与所建议的方法一起,可以成为线性和非线性静力分析的有用工具。连续模型的特点该HS73模型是由弯曲和剪切梁组成,来定义弯曲(EI)及剪切(GA)刚度的,从而确定整体刚度横向刚度。主要的模型参数EI和GA有关,通过彼此的(公式1)系数α相互联系。以α趋于无穷模型将展出纯剪切变形而α=0表示纯弯曲变形。注意的事,必须查明离散建筑物的结构构件的弯曲和剪切,因为连续模型的整体行为是受在EI和GA的变化而决定。公式2表示在HS73的一系列计算。变量Ic和H分别表示的惯性和层高。Ib1的惯性和由L1和L2,分别确定相对僵化的总长度除以Ib2,梁毗邻自顶柱(见图。在3提到文件)。公式2表明,GA(占总数的横向刚度剪切组件)是一个横向载荷方向框架抗弯刚度的计算分数。弯曲部分(EI)的总刚度计算或者考虑在剪力墙加载方向/或不成为一个框架中其它柱跨度方向的负荷载。这个假设对双系统效果非常好。但是,它可能会失败,因为它会在抗弯矩框架上沿载荷方向,将柱并到GA横向刚度。事实上,这种近似将减少整个抗弯矩框架到剪力梁,将会不准确的描述抗弯矩框架反应,除非所有的梁被认为是刚性的。就作者的所知,研究使用HS73模型不仅详细描述了α的计算,而且把离散建筑系统作为连续模型。在大多数情况下,这些研究不同结构分配过程,从纯弯曲跨越到纯剪通用的α值。这种方法被认为是合理的,是代表不同结构理论的行为。不过,以上强调的事实,即有关的横向刚度计算需要进一步调查,以提高模型的性能,同时简化HS73实际抗弯矩框架作为一个连续模型。在这个意义上说,的关于框架侧向刚度估计的一些重要研究是值得讨论的。这可能是关于GA和EI有用的增强计算方法,用于描述连续系统的总横向刚度。抗弯矩框架的近似横向刚度这里有很多研究关于抗弯矩框架横向刚度的测定。Muto(1974)和Hosseini和Imagh-e-Naiini(1999)所提出的方法(以下分别简称M74和HI99)基于本文件和他们相对于HS73途径提高了其在描述系统结构的侧向变形。公式3显示总横向刚度K的M74,是一根柱在一个中间楼层的值。参数lchIb1,Ib2,L1和L2在公式2中的具相同涵义。公式(2)是在HS73提出的一个关于公式(3)的简化版本。前者表达假定顶部柱之间梁的跨度和底部柱之间梁的跨度相同。不过,公式(2)及(3)表现出一个重大的概念区别:M74认为它为总计的横向刚度,HS73同样地解释为剪切作用的术语。该方法HI99通过一个简单的系统把抗弯框架的横向刚度,定义为是由一层楼高的框架的子模板组成。每个子模块表现为原结构的一个楼层,而且子模块的柱刚度,由最初的层所有柱的总计刚度的一半来计算。在一个子模块的上面的(ku)、比较低的(kl)梁的相对刚度,由最初层的顶和底部梁的刚度计算而得来。楼层总的横向刚度在公式5中由HI99给出。参数架KC和h分别表示了柱在子模块中的相对刚性和长度。第一层总横向刚度的计算方法是用较大的那个刚度值,分配到kl来表示固定的基础条件。具有类似功能的公式(2)及公式(3)。由横向刚度计算的总横向刚度,它表现出一种更类似于M74的理论框架。上面介绍的讨论表明,这两个M74和HI99考虑横向刚度从第一层到固定基地边界的变化。但是,他们忽视了在顶层自由端的条件。由于事实上,舒尔茨(1992)指出,建筑物的横向刚度沿高度变化可能发生在边界层。根据上述情况,舒尔茨(1992)的边界层定义不仅包括地面和顶层也包括第二层。虽然舒尔茨(1992)为某些特定情况下提出了边界层的修正系数。他不用一般表达式来计算边界层上刚度的变化。参考文献AkkarS,YazganU,GülkanP(2005)Driftestimatesinframebuildingssubjectedtonear-faultgroundmotions.JStructEngASCE131(7):1014–1024AmericanSocietyofCivilEngineers(ASCE)(2007)Seismicrehabilitationofexistingbuildings:ASCEstandard,reportno.ASCE/SEI41-06.Reston,VirginiaAppliedTechnologyCouncil(ATC)(2004)FEMA-440Improvementofnonlinearstaticseismicanalysispro-cedures,ATC-55projectreport.preparedbytheAppliedtechnologyCouncilfortheFederalEmergencyManagementAgency,Washington,DC.4、BlumeJA(1968)Dynamiccharacteristicsofmulti-storybuildings.JStructDivASCE94(2):377–402BorziB,PinhoR,CrowleyH(2008)Simplifiedpushover-basedvulnerabilityanalysisforlarge-scaleassessmentofRCbuildings.EngStruct30:804–820外文原文:TheeffectsofsupplementarycementingmaterialsinmodifyingtheheatofhydrationofconcreteYunusBallimPeterC.GrahamReceived:23February2008/Accepted:17September2008/Publishedonline:23September2008AbstractThispaperisintendedtoprovideguidanceontheformandextenttowhichsupplementarycementingmaterials,incombinationwithPortlandcement,modifiestherateofheatevolutionduringtheearlystagesofhydrationinconcrete.Inthisinvestigation,concreteswerepreparedwithflyash,condensedsilicafumeandgroundgranulatedblastfurnaceslag,blendedwithPortlandcementinproportionsrangingfrom5%to80%.Theseconcretesweresubjectedtoheatofhydrationtestsunderadiabaticconditionsandtheresultswereusedtoassessandquantifytheeffectsofthesupplementarycementingmaterialsinalteringtheheatrateprofilesofconcrete.Thepaperalsoproposesasimplifiedmathematicalformoftheheatratecurveforblendedcementbindersinconcretetoallowadesignstageassessmentofthelikelyearly-agetime–temperatureprofilesinlargeconcretestructures.Suchanassessmentwouldbeessentialinthecaseofconcretestructureswherethepotentialforthermallyinducedcrackingisofconcern.Keywords:Heatofhydration_Flyash_Silicafume_Slag_Concrete1IntroductionSupplementarycementingmaterials,suchasgroundgranulatedblastfurnaceslag(GGBS),flyash(FA)andcondensedsilicafume(CSF),arenowroutinelyusedinstructuralconcrete.Usedjudiciously,thesematerialsareabletoprovideimprovementsintheeconomy,microstructureofcementpasteaswellastheengineeringpropertiesanddurabilityofconcrete.Theyalsoaltertherateofhydrationandcaninfluencethetime–temperatureprofileinlargeconcreteelements.Thispaperisaimedatanimprovedunderstandingofthewayinwhichtheearly-ageheatofhydrationcharacteristicsofconcretearealteredbytheadditionofsupplementarycementingmaterials(SCM),incombinationwithPortlandcement,asapartofthebinder.Importantly,inthedesignandconstructionoflargeconcreteelements,wheretheextentoftemperatureriseisofconcern,ourabilitytoreliablypredicttheearly-agetemperaturedifferentialsintheconcreterequiresacarefulunderstandingoftheratesatwhichheatisevolvedduringhydration[1–3].Inessence,theintentionofthispaperistoprovideguidanceontheformoftheheat-ratefunctionforconcretescontainingsupplementarycementingmaterials.Thisisessentialinputinformationinthedesignandconstructionoflargedimensionand/orhighstrengthstructureswherethermalstrainsarelikelytoleadtodeleteriouscrackingand/orlossofdurability.Intheinvestigationreportedhere,concretesamplescontainingcombinationsofPortlandcementwithGGBS,FAorCSFweretestedinanadiabaticcalorimeterinordertodeterminetheirheatofhydrationcharacteristics.Thetestprogrammewaslimitedtobinaryblendsofthematerials,i.e.,eachtestwaslimitedtoacombinationofPortlandcementandonesupplementarymaterialandallconcreteswerepreparedatthesamewater:binder(w/b)ratio.Foreachtypeofsupplementarymaterial,concreteswerepreparedwithsupplementarymaterialreplacingbetween5%and80%ofthePortlandcement,dependingonthetypeofSCM.Concretesampleswithavolumeofapproximately1lweretestedintheadiabaticcalorimeter.Theadiabaticcalorimeterthatwasusedinthetestprogrammeisbasedontheprincipleofsurroundingaconcretesamplewithanenvironmentinwhichthetemperatureiscontrolledtomatchthetemperatureofthehydratingconcreteitself,thusensuringthatnoheatistransferredtoorfromthesampleandtheriseintemperaturemeasuredissolelyduetotheheatMevolvedbythehydrationprocess.ThiscalorimeterhasbeendescribedindetailbyGibbonetal.[4].SincetherateofevolutionofheatduringtheMhydrationofcementitiousmaterialsisinfluencedbyMthetemperatureatwhichthereactiontakesplace,thereisnouniqueadiabaticheatratecurveforaparticularcementorcombinationofcementitiousmaterials.Comparisonsoftheheatrateperformancesofmaterialsmust,therefore,bemadeonthebasisofthedegreeofhydrationormaturity.Inthispaper,theresultsareexpressedintermsofmaturityort20h,whichreferstotheequivalenttimeofhydrationat20_C.Thisformofexpressionoftheheatratefunctionandthejustificationforitsuse,isdescribedbyBallimandGraham[1].2ConcretematerialsandmixturesConcretematerialswhicharecommonlyusedandreadilyavailableinSouthAfricawereusedinthesetests.ThePortlandcementcompliedwithSABSEN197-1,typeCEMIclass42.5[5]andtheGGBS,flyashandsilicafumecompliedwithSABS1491Parts1,2and3[6–8],respectively.TheoxidecontentsofthebindermaterialsweredeterminedbyXRFanalysisandtheresultsareshowninTable1.Therangeofreplacementlevelsbyeachofthethreesupplementarymaterialsused,togetherwiththeconcretemixtureproportions.Theconcretemixtureproportionswerekeptthesamethroughout,exceptthatthecompositionandrelativeproportionofthebinderwaschangedasrequired.Alltheconcretesthereforehadaw/bratioofapproximately0.67andthewatercontentwassufficienttocompacttheconcretebymanuallystampingthesampleholder.Allthemixturecomponents,includingthewater,werestoredinthesameroomasthecalorimeteratleast24hbeforemixing.Thisallowedthetemperatureofthematerialstoequilibratetotheroomtemperature,whichwascontrolledat19±1_C.A1.2lsampleofeachconcretewaspreparedbymanualmixinginasteelbowlandtheadiabatictestwasstartedwithin15minafterthewaterwasaddedtothemixture.Allthetestswerestartedattemperaturesbetween18and20_Candtemperaturemeasurementinthecalorimeterwascontinuedforapproximately4days.Thesilicasandusedintheconcreteswasobtainedinthreesizefractionsandthesewererecombinedasneededforthemixingoperationtoensureauniformsandgradingforeachconcrete.Thestoneusedintheconcretewasawashedsilica,largelysingle-sizedand9.5mminnominaldimension.3ConclusionsTheintentionoftheprojectreportedinthispaperwasNtoquantifytheeffectsofsupplementarycementingmaterialsontherateofheatevolutioninPortlandcementconcretes.Inparticular,thefocuswasonprovidinginformationontherateofheatevolutioninawaythatwouldallowimprovedpredictionoftheinternalconcretetemperatureprofilesduringconstructionoflargeorhigh-strengthconcreteelements.Inthisregardandgiventheparametersoftheconcretesused,thestudyhasshownthat:ThepeakrateofheatevolutioninGGBSorFAblendedbindersdecreaseslinearlywithincreasingadditionofGGBSorFA;ExceptforFAreplacementsashighas80%,thetimetoreachpeakratesofheatevolutionisreducedwithincreasedproportionsofGGBSorFAinthebinders.Iftheproportionofflyashisincreasedto80%,thereisasignificantincreaseinthetimerequiredtoreachthepeakrateofheatevolution.Uptoareplacementlevelof15%,theadditionofCSFinPortlandcementbindersdoesnotsignificantlyaltertheheat-rateprofileofconcrete.Themostsignificanteffectnotedwasanapproximately9%increaseinthepeakrateofhydrationwhen15%ofthePortlandcementwasreplacedbyCSF.However,theadditionof10%and15%CSFhadamarkedeffectinreducingthetimetoreachthepeakrateofhydration.ThepresenceoftheSCM’sassessedinthisinvestigationhavetheeffectofstimulatingthehydrationoftheCEMIintheblendedbinderThisstimulatedhydrationresultsfromtheconsumptionofcalciumhydroxide,thedilutioneffectandhydrationnucleationsiteeffect.ThisstimulationofhydrationisstrongestwiththeadditionofCSF,moderateinthecaseofGGBSandweakinthecaseofFA.Intheabsenceofamorereliableheat-ratecurveforconcretecontainingsupplementarycementitiousmaterials,themodelproposedinEqs.6–8canbeusedtoprovideafirst-estimateofthetemperatureprofilesatthedesignstageofatemperature-sensitiveconcretestructure.References1.BallimY,GrahamPC(2003)Amaturityapproachtotherateofheatevolutioninconcrete.MagConcrRes55(3).doi:10.1680/macr.75712.KoendersEAB,vanBreugelK(1994)Numericalandexperimentaladiabatichydrationcurvedetermination.In:SpringenschmidR(ed)Thermalcrackinginconcreteatearlyages.E&FNSpon,London3.MaekawaK,ChaubeR,KishiT(1999)Modellingofconcreteperformance.SponPress,London4.GibbonGJ,BallimY,GrieveGRH(1997)Alowcost,computer-controlledadiabaticcalorimeterfordeterminingtheheatofhydr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论