行星齿轮中英文对照外文翻译文献_第1页
行星齿轮中英文对照外文翻译文献_第2页
行星齿轮中英文对照外文翻译文献_第3页
行星齿轮中英文对照外文翻译文献_第4页
行星齿轮中英文对照外文翻译文献_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

行星齿轮中英文对照外文翻译文献行星齿轮中英文对照外文翻译文献(文档含英文原文和中文翻译)

原文:PlanetaryGearsIntroductionTheTamiyaplanetarygearboxisdrivenbyasmallDCmotorthatrunsatabout10,500rpmon3.0VDCanddrawsabout1.0A.Themaximumspeedratiois1:400,givinganoutputspeedofabout26rpm.Fourplanetarystagesaresuppliedwiththegearbox,two1:4andtwo1:5,andanycombinationcanbeselected.Notonlyisthisagooddriveforsmallmechanicalapplications,itprovidesanexcellentreviewofepicyclegeartrains.Thegearboxisaverywell-designedplastickitthatcanbeassembledinaboutanhourwithveryfewtools.ThesourceforthekitisgivenintheReferences.Let'sbeginbyreviewingthefundamentalsofgearing,andthetrickofanalyzingepicyclicgeartrains.EpicyclicGearTrainsApairofspurgearsisrepresentedinthediagrambytheirpitchcircles,whicharetangentatthepitchpointP.Themeshinggearteethextendbeyondthepitchcirclebytheaddendum,andthespacesbetweenthemhaveadepthbeneaththepitchcirclebythededendum.Iftheradiiofthepitchcirclesareaandb,thedistancebetweenthegearshaftsisa+b.Intheactionofthegears,thepitchcirclesrollononeanotherwithoutslipping.Toensurethis,thegearteethmusthaveapropershapesothatwhenthedrivinggearmovesuniformly,sodoesthedrivengear.Thismeansthatthelineofpressure,normaltothetoothprofilesincontact,passesthroughthepitchpoint.Then,thetransmissionofpowerwillbefreeofvibrationandhighspeedsarepossible.Wewon'ttalkfurtheraboutgearteethhere,havingstatedthisfundamentalprincipleofgearing.IfagearofpitchradiusahasNteeth,thenthedistancebetweencorrespondingpointsonsuccessiveteethwillbe2πa/N,aquantitycalledthecircularpitch.Iftwogearsaretomate,thecircularpitchesmustbethesame.Thepitchisusuallystatedastheration2a/N,calledthediametralpitch.Ifyoucountthenumberofteethonagear,thenthepitchdiameteristhenumberofteethtimesthediametralpitch.Ifyouknowthepitchdiametersoftwogears,thenyoucanspecifythedistancebetweentheshafts.Thevelocityratiorofapairofgearsistheratiooftheangularvelocityofthedrivengeartotheangularvelocityofthedrivinggear.Bytheconditionofrollingofpitchcircles,r=-a/b=-N1/N2,sincepitchradiiareproportionaltothenumberofteeth.Theangularvelocitynofthegearsmaybegiveninradians/sec,revolutionsperminute(rpm),oranysimilarunits.Ifwetakeonedirectionofrotationaspositive,thentheotherdirectionisnegative.Thisisthereasonforthe(-)signintheaboveexpression.Ifoneofthegearsisinternal(havingteethonitsinnerrim),thenthevelocityratioispositive,sincethegearswillrotateinthesamedirection.Theusualinvolutegearshaveatoothshapethatistolerantofvariationsinthedistancebetweentheaxes,sothegearswillrunsmoothlyifthisdistanceisnotquitecorrect.Thevelocityratioofthegearsdoesnotdependontheexactspacingoftheaxes,butisfixedbythenumberofteeth,orwhatisthesamething,bythepitchdiameters.Slightlyincreasingthedistanceaboveitstheoreticalvaluemakesthegearsruneasier,sincetheclearancesarelarger.Ontheotherhand,backlashisalsoincreased,whichmaynotbedesiredinsomeapplications.Anepicyclicgeartrainhasgearshaftsmountedonamovingarmorcarrierthatcanrotateabouttheaxis,aswellasthegearsthemselves.Thearmcanbeaninputelement,oranoutputelement,andcanbeheldfixedorallowedtorotate.Theoutergearistheringgearorannulus.Asimplebutverycommonepicyclictrainisthesun-and-planetepicyclictrain,showninthefigureattheleft.Threeplanetarygearsareusedformechanicalreasons;theymaybeconsideredasoneindescribingtheactionofthegearing.Thesungear,thearm,ortheringgearmaybeinputoroutputlinks.Ifthearmisfixed,sothatitcannotrotate,wehaveasimpletrainofthreegears.Then,n2/n1=-N1/N2,n3/n2=+N2/N3,andn3/n1=-N1/N3.Thisisverysimple,andshouldnotbeconfusing.Ifthearmisallowedtomove,figuringoutthevelocityratiostaxesthehumanintellect.Attemptingthiswillshowthetruthofthestatement;ifyoucanmanageit,youdeservepraiseandfame.Itisbynomeansimpossible,justinvoved.However,thereisaveryeasywaytogetthedesiredresult.First,justconsiderthegeartrainlocked,soitmovesasarigidbody,armandall.Allthreegearsandthearmthenhaveaunityvelocityratio.Thetrickisthatanymotionofthegeartraincancarriedoutbyfirstholdingthearmfixedandrotatingthegearsrelativetooneanother,andthenlockingthetrainandrotatingitaboutthefixedaxis.Thenetmotionisthesumordifferenceofmultiplesofthetwoseparatemotionsthatsatisfiestheconditionsoftheproblem(usuallythatoneelementisheldfixed).Tocarryoutthisprogram,constructatableinwhichtheangularvelocitiesofthegearsandarmarelistedforeach,foreachofthetwocases.Thelockedtraingives1,1,1,1forarm,gear1,gear2andgear3.Armfixedgives0,1,-N1/N2,-N1/N3.Supposewewantthevelocityrationbetweenthearmandgear1,whengear3isfixed.Multiplythefirstrowbyaconstantsothatwhenitisaddedtothesecondrow,thevelocityofgear3willbezero.ThisconstantisN1/N3.Now,doingonedisplacementandthentheothercorrespondstoaddingthetworows.WefindN1/N3,1+N1/N3,N1/N3-N1/N2.Thefirstnumberisthearmvelocity,thesecondthevelocityofgear1,sothevelocityratiobetweenthemisN1/(N1+N3),aftermultiplyingthroughbyN3.ThisisthevelocityratioweneedfortheTamiyagearbox,wheretheringgeardoesnotrotate,thesungearistheinput,andthearmistheoutput.Theprocedureisgeneral,however,andwillworkforanyepicyclictrain.OneoftheTamiyaplanetarygearassemblieshasN1=N2=16,N3=48,whiletheotherhasN1=12,N2=18,N3=48.Becausetheplanetarygearsmustfitbetweenthesunandringgears,theconditionN3=N1+2N2mustbesatisfied.Itisindeedsatisfiedforthenumbersofteethgiven.Thevelocityratioofthefirstsetwillbe16/(48+16)=1/4.Thevelocityratioofthesecondsetwillbe12/(48+12)=1/5.Bothratiosareasadvertised.Notethatthesungearandarmwillrotateinthesamedirection.Thebestgeneralmethodforsolvingepicyclicgeartrainsisthetabularmethod,sinceitdoesnotcontainhiddenassumptionslikeformulas,norrequiretheworkofthevectormethod.Thefirststepistoisolatetheepicyclictrain,separatingthegeartrainsforinputsandoutputsfromit.Findtheinputspeedsorturns,usingtheinputgeartrains.Thereare,ingeneral,twoinputs,oneofwhichmaybezeroinsimpleproblems.Nowpreparetworowsofthetableofturnsorangularvelocities.Thefirstrowcorrespondstorotatingaroundtheepicyclicaxisonce,andconsistsofall1's.Writedownthesecondrowassumingthatthearmvelocityiszero,usingtheknowngearratios.Therowthatyouwantisalinearcombinationofthesetworows,withunknownmultipliersxandy.Summingtheentriesfortheinputgearsgivestwosimultaneouslinearequationsforxandyintermsoftheknowninputvelocities.Nowthesumofthetworowsmultipliedbytheirrespectivemultipliersgivesthespeedsofallthegearsofinterest.Finally,findtheoutputspeedwiththeaidoftheoutputgeartrain.Becarefultogetthedirectionsofrotationcorrect,withrespecttoadirectiontakenaspositive.TheTamiyaGearboxKitThepartsarebestcutfromthesprueswithaflush-cutterofthetypeusedinelectronics.TheverysmallbitsofplasticremainingcanthenberemovedwithasharpX-actoknife.Carefullyremoveallexcessplastic,astheinstructionssay.Readtheinstructionscarefullyandmakesurethatthingsaretherightwayupandinthecorrectrelativepositons.Thegearboxunitsgotogethereasilywithlightpressure.Notethatthebrownonesmustgotogetherinthecorrectrelativeorientation.The4mmwashersaretheonesofwhichtwoaresupplied,andthereisalsoafull-sizedrawingofoneintheinstructions.Thesmallerwasherswillnotfitovertheshaft,anyway.Theoutputshaftismetal.Uselargerlong-noseplierstopresstheE-ringintopositioninitsgrooveinfrontofthewasher.Thereisapictureshowinghowtodothis.TherewasanextraE-ringinmykit.Thethreeprongsfitintothecarriersfortheplanetarygears,andaredrivenbythem.Nowstackupthegearboxunitsasdesired.Iusedallfour,beingsuretoputa1:5unitontheendnexttothemotor.Therefore,Ineededthelongscrews.Presstheorangesungearforthelast1:5unitfirmlyonthemotorshaftasfarasitwillgo.Ifitisnotwell-seated,themotorclipwillnotclose.Itmightbeagoodideatoputsomelubricantonthisgearfromthetubeincludedwiththekit.Ifyouuseadifferentlubricant,testitfirstonapieceofplasticfromthekittomakesurethatitiscompatible.Adrygraphitelubricantwouldalsoworkquitewell.Thisshouldspreadlubricantonallpartsofthelastunit,whichistheonesubjecttothehighestspeeds.Putthemotorinplace,gentlybutfirmly,wigglingitsothatthesungearmeshes.Ifthesungearisnotmeshed,themotorclipwillnotclose.Nowputthemotorterminalsinaverticalcolumn,andpressonthemotorclamp.Thereverseoftheinstructionsshowhowtoattachthedrivearmandgivessomehintsonuseofthegearbox.Igotanextraspringpin,andtwoextra3mmwashers.Ifyouhavesomesmallwashers,theycanbeusedonthemachinescrewsholdingthegearboxtogether.Enoughtorqueisproducedattheoutputtodamagethings(upto6kg-cm),somakesuretheoutputarmcanrotatefreely.IusedastandardlaboratoryDCsupplywithvariablevoltageandcurrentlimiting,butdrycellscouldbeusedaswell.Thecurrentdrainof1AishighevenforDcells,soapowersupplyisindicatedforserioususe.Theinstructionssaynottoexceed4.5V,whichisgoodadvice.With400:1reduction,themotorshouldrunfreelywhatevertheoutputload.Mygearboxranwellthefirsttimeitwastested.Itimedtheoutputrevolutionswithastopwatch,andfound47sfor20revolutions,or25.5rpm.Thiscorrespondsto10,200rpmatthemotor,whichisclosetospecifications.Itwouldbeeasytoconnectanothergearboxinserieswiththisone(partsareincludedtomakethispossible),andgetabout4revolutionsperhour.Stillanothergearboxwouldproduceaboutonerevolutioninfourdays.Thisisanexcellentkit,andIrecommendithighly.OtherEpicyclicTrainsAveryfamousepicyclicchainistheWattsun-and-planetgear,patentedin1781asanalternativetothecrankforconvertingthereciprocatingmotionofasteamengineintorotarymotion.ItwasinventedbyWilliamMurdoch.Thecrank,atthattime,hadbeenpatentedandWattdidnotwanttopayroyalties.Anincidentaladvantagewasa1:2increaseintherotativespeedoftheoutput.However,itwasmoreexpensivethanacrank,andwasseldomusedafterthecrankpatentexpired.WatchtheanimationonWikipedia.Theinputisthearm,whichcarriestheplanetgearwheelmatingwiththesungearwheelofequalsize.Theplanetwheelispreventedfromrotatingbybeingfastenedtotheconnectingrod.Itoscillatesalittle,butalwaysreturnstothesameplaceoneveryrevolution.Usingthetabularmethodexplainedabove,thefirstlineis1,1,1wherethefirstnumberreferstothearm,thesecondtotheplanetgear,andthethirdtothesungear.Thesecondlineis0,-1,1,wherewehaverotatedtheplanetoneturnanticlockwise.Adding,weget1,0,2,whichmeansthatonerevolutionofthearm(onedoublestrokeoftheengine)givestworevolutionsofthesungear.Wecanusethesun-and-planetgeartoillustrateanothermethodforanalyzingepicyclicaltrainsinwhichweusevelocities.Thismethodmaybemoresatisfyingthanthetabularmethodandshowmoreclearlyhowthetrainworks.Inthediagramattheright,AandOarethecentresoftheplanetandsungears,respectively.ArotatesaboutOwithangularvelocityω1,whichweassumeclockwise.Atthepositionshown,thisgivesAavelocity2ω1upward,asshown.Nowtheplanetgeardoesnotrotate,soallpointsinitmovewiththesamevelocityasA.ThisincludesthepitchpointP,whichisalsoapointinthesungear,whichrotatesaboutthefixedaxisOwithangularvelocityω2.Therefore,ω2=2ω1,thesameresultaswiththetabularmethod.Thediagramattheleftshowshowthevelocitymethodisappliedtotheplanetarygearsettreatedabove.Thesunandplanetgearsareassumedtobethesamediameter(2units).Theringgearisthenofdiameter6.Letusassumethesungearisfixed,sothatthepitchpointPisalsofixed.ThevelocityofpointAistwicetheangularvelocityofthearm.SincePisfixed,P'mustmoveattwicethevelocityofA,orfourtimesthevelocityofthearm.However,thevelocityofP'isthreetimestheangularvelocityoftheringgearaswell,sothat3ωr=4ωa.Ifthearmistheinput,thevelocityratioisthen3:4,whileiftheringistheinput,thevelocityratiois4:3.Athree-speedbicyclehubmaycontaintwooftheseepicyclicaltrains,withtheringgearsconnected(actually,commontothetwotrains).Theinputfromtherearsprocketistothearmofonetrain,whiletheoutputtothehubisfromthearmofthesecondtrain.Itispossibletolockoneorbothofthesungearstotheaxle,orelsetolockthesungeartothearmandfreeoftheaxle,sothatthetraingivesa1:1ratio.Thethreegearsare:high,3:4,outputtrainlocked;middle,1:1,bothtrainslocked,andlow,4:3inputtrainlocked.Ofcourse,thisisjustonepossibility,andmanydifferentvariablehubshavebeenmanufactured.TheplanetaryvariablehubwasintroducedbySturmey-Archerin1903.ThepopularAWhubhadtheratiosmentionedhere.Chainhoistsmayuseepicyclicaltrains.Theringgearisstationary,partofthemainhousing.Theinputistothesungear,theoutputfromtheplanetcarrier.Thesunandplanetgearshaveverydifferentdiameters,toobtainalargereductionratio.TheModelTFord(1908-1927)usedarevertedepicyclictransmissioninwhichbrakebandsappliedtotheshaftscarryingsungearsselectedthegearratio.Thelowgearratiowas11:4forward,whilethereversegearratiowas-4:1.Thehighgearwas1:1.Revertedmeansthatthegearsontheplanetcarriershaftdroveothergearsonshaftsconcentricwiththemainshaft,wherethebrakebandswereapplied.Thefloorcontrolswerethreepedals:low-neutral-high,reverse,transmissionbrake.Thehandbrakeappliedstoppedtheleft-handpedalatneutral.Thesparkadvanceandthrottlewereonthesteeringcolumn.Theautomotivedifferential,illustratedattheright,isabevel-gearepicyclictrain.Thepiniondrivestheringgear(crownwheel)whichrotatesfreely,carryingtheidlergears.Onlyoneidlerisnecessary,butmorethanonegivesbettersymmetry.Theringgearcorrespondstotheplanetcarrier,andtheidlergearstotheplanetgears,oftheusualepicyclicchain.Theidlergearsdrivethesidegearsonthehalf-axles,whichcorrespondtothesunandringgears,andaretheoutputgears.Whenthetwohalf-axlesrevolveatthesamespeed,theidlersdonotrevolve.Whenthehalf-axlesmoveatdifferentspeeds,theidlersrevolve.Thedifferentialappliesequaltorquetothesidegears(theyaredrivenatequaldistancesbytheidlers)whileallowingthemtorotateatdifferentspeeds.Ifonewheelslips,itrotatesatdoublespeedwhiletheotherwheeldoesnotrotate.Thesame(small)torqueis,nevertheless,appliedtobothwheels.Thetabularmethodiseasilyusedtoanalyzetheangularvelocities.Rotatingthechainasawholegives1,0,1,1forring,idler,leftandrightsidegears.Holdingtheringfixedgives0,1,1,-1.Iftherightsidegearisheldfixedandtheringmakesonerotation,wesimplyaddtoget1,1,2,0,whichsaysthattheleftsidegearmakestworevolutions.Thevelocitymethodcanalsobeused,ofcourse.Consideringthe(equal)forcesexertedonthesidegearsbytheidlergearsshowsthatthetorqueswillbeequal.ReferencesTamiyaPlanetaryGearboxSet,Item72001-1400.EdmundScientific,CatalogNo.C029D,itemD30524-08($19.95).C.Carmichael,ed.,Kent'sMechanicalEngineer'sHandbook,12thed.(NewYork:JohnWileyandSons,1950).DesignandProductionVolume,p.14-49to14-43.V.L.Doughtie,ElementsofMechanism,6thed.(NewYork:JohnWileyandSons,1947).pp.299-311.Epicyclicgear.Wikipediaarticleonepicyclictrains.Sunandplanetgear.Includesananimation.行星齿轮机构简介Tamiya行星轮变速箱由一个约10500r/min,3.0V,1.0A的直流电机运行。最大传动比1:400,输出速度为26r/min。四级行星轮变速箱由两个1:4和两个1:5的传动级组成,并可以任意选择组合。对于小的机械应用程序这不仅是一个良好的驱动器,而且还提供了一个出色检验的行星齿轮系。这种齿轮变速箱是一种设计非常精心的塑料套件,可在约一个小时用很少的工具装配完成。参考文献中给出了装备资料。下面让我们来开始检验齿轮传动装置的基本原理和分析行星轮系的技巧。行星轮系一对直齿圆柱齿轮的由节圆表示在图表中,它们相切与节点P点,啮合齿轮的轮齿齿顶超出了节圆半径,在节圆与齿齿顶之间有一齿顶间隙,。若节圆半径分别为a和b,齿轮轴之间的距离就是a+b。为了确保齿轮传动中,一个节圆在另一个节圆上没有滑动,必须得有适当的形状确保从动轮与主动轮的运动一致。这就意味着接触线以正常接触齿廓的形式通过节点。这时,动力传递脱离高速震动达到可能。在这里我们不会进一步谈论齿轮轮齿,以及上述有提到的传动装置的基本原理。如果一个齿轮节圆半径上有N个齿,这时在两个连续的齿间的距离,我们称的齿间距将会是2πa/N。如果两个齿轮相啮合,他们之间的齿距必须是相同的。他们之间的节距通常以2a/N来表示,我们称为模数。如果你计算一个齿轮的齿数,这时节圆直径的大小是模数的倍数,而倍数则是齿数。如果你知道两个齿轮的节圆直径,那么你就能够得出两齿轮轴之间的距离。一对齿轮的传动比r驱动轮与从动轮之间的角速度之比。因为分度圆之间旋转方向的限制条件,r=-a/b=-N1/N2,,因此它们之间的节圆半径比与齿数成正比。齿轮角速度n可以用转/秒,转/分,或者任何类似的单位表示。如果以一齿轮的旋转方向为正,此时另外一个的方向则为负。这就是上面的表达式中的(-)标志的由于原因。如果其中一个是内齿(齿在齿圈内部),这时传动比为正,因此它们的传动方向一致。常用渐开线齿轮的牙形能够允许轴线之间一定的变位,所以即使它们之间的距离不是很精确也能够顺利的运行。齿轮的传动比并不依赖于该轴的精确的间距,而是轮齿或者节圆诸如此类之间的安装。稍微增加高于其理论值的距离,能够使运行更容易。因为其游隙较大的齿轮,在另一方面齿隙也增加,它可能不是我们在某些应用上所希望的。一个行星轮系包含了固定在齿轮轴上的转臂和行星架以及齿轮和旋转的齿轮轴。一个移动的手臂或承运人的有关该的轴以及齿轮自己可以旋转的齿轮轴。转臂可以是一个输入或输出构件而且可被固定固定或可旋转。最外面的齿轮为内齿轮。一个简单常见的行星轮是如左图所示的太阳-行星轮系。这是三个行星齿轮轮系用于机械领域的原因;他们可能被认为是在描述该传动装置的操作之一。太阳轮、转臂或内齿轮可能成为输入或输出的链接。如果转臂被固定,就不能旋转,一个简单的三行星轮轮系吗有n2/n1=-N1/N2,n3/n2=+N2/N3,和n3/n1=-N1/N3。这是非常简单,不应令人困惑。如果转臂允许移动,算出速度比彰显出了人类的智慧。尝试这将显示该陈述的真实性;如果你能做到,你应得到赞扬和声誉。这并不意味这将不可能,只是比较复杂罢了。不过,有一个非常简单的方法获得所需的结果。首先,把这轮系假定认为是锁定的,因此把转臂和所有的作为刚体、。所有的三个齿轮和手臂然后有一个统一的速度比。行星齿轮任何运动的特点是可以被第一个固定支撑转臂和相对于另外一个旋转的齿轮实现,然后锁定轮系并关于固定的轴旋转。净运动总和或两个不同的独立的分离运动来满足这问题的条件(通常一个构件被固定)。若要进行此程序,构造的齿轮和转臂臂的角速度列出两例的每个表。锁定的轮系给定的N1,N2,N3为齿轮1、齿轮2和齿轮3。固定转臂为0,1,-N1/N2,-N1/N3。假定我们想知道齿轮1与转臂之间的传动比,当齿轮3固定时,轮1时齿轮3固定的。第一行乘以常量中,以便在添加第二行时,齿轮3的速度将为零。此常量为N1/N3。现在,做一个位移,然后另对应于添加这两行。我们发现N1/N3,1+N1/N3,N1/N3-N1/N2。第一个数字是挥臂速度,第二个数字是齿轮1的速度,因此,它们之间的速度比是N1/(N1+N3),再用这个结果乘以N3。这就是我们需要的田宫变速器的速度比,在变速器里面,环齿轮不会旋转,太阳齿轮是输入端,挥臂速度则是输出值。这是个通用过程,但可以为任何行星齿轮系服务。田行星齿轮组件之一有N1=N2=16,N3=48,而另有N1=12,N2=18,N3=48。因为行星齿轮必须刚好位于太阳和环齿轮之间,N3=2N1+N2这个条件必须得到满足。事实上,这个条件得满足给定齿轮的数目。第一个组件的速度比将是16/(48+16)=1/4。第二个组件的速度比将是12/(48+12)=1/5。这两个比率如同广告中介绍的那样。请注意,太阳齿轮和挥臂将向同一个方向旋转。通用的求解行星轮系最佳方法是列表法,因为这种方法不包含像公式一样的隐藏假设,也不要求应用矢量法进行计算。第一步是隔离行星轮系,从行星轮系中分离出齿轮轮系的输入端和输出值。找到输入速度或转速,使用输入的行星齿轮轮系。一般情况下,这里有两个输入端,其中之一在简单情况下可能为零。现在准备两行关于转速或者角速度的图表。第一行对应于围绕行星轴旋转一次产生的参数,并由所有1组成。记下第二行,其中假定臂速度为零,使用已知的齿轮比。你需要的一行是上述两行组成的一个线性组合,再加上未知乘数x和y。把输入的齿轮值相加,根据已知的输入速度,同时产生两个关于x和y的两种线性方程组。现在,把这两行数值相加的和乘以其各自的乘数,就产生了相关的所有齿轮的速度。最后,借助输出齿轮传动计算出输出速度。参考已经采取的正方向,务必使其旋转方向正确。田宫齿轮箱工具包各个组件从浇口处很好地被切割成单体,就像是用在电子产品中使用的齐平刀加工过一样。然后,就可以用一把锋利的X阿克托刻刀将余下的细小塑料部件移除。要按照说明书所说,小心地除掉所有多余的塑料。仔细阅读说明,确保所有事情都按正确的方式运行,并位于正确的相对位置。变速箱组件在轻压下整体运行自如。要注意,棕色部件必须同时朝正确的相对方向运行。4毫米的垫圈由两个组件提供,说明书中也有一个垫圈的全尺寸绘图。不过,较小的垫圈在轴上会显得不适合。输出轴是金属材质。使用较大的长嘴钳压迫E环使其进入垫圈前部的槽。说明书中有一张图片讲述如何执行此操作。工具包中有一个额外的E环。三个插针进入行星齿轮的传动器,并受到它们的驱动。现在按照设计把变速箱组件堆叠起来。我使用整个四个组件,但要确保把一个1:5的部件放在电机末端的旁边。因此,我需要长螺丝刀。橙色的太阳齿轮作为最后一个1:5的部件,务必把这个齿轮紧紧地压进电机轴,压到它不能滑动为止。如果这个齿轮没有放好,电机加紧钳将不会关闭。通过该部件自身带的管子向齿轮注入润滑油,这样做效果比较好。如果您使用不同的润滑剂,首先从部件上取一块塑料然后滴上润滑剂进行测试,以确保它和部件能兼容。干石墨润滑油效果也十分不错。在最后一个组件的所有组成部分上都要涂满润滑油,因为这个组件在运行时能达到最高速度。把电动机放在合适的放置,动作要轻但要牢固,晃动电动机以便使太阳齿轮啮合。如果太阳齿轮没有达到啮合,电动机的加紧钳将不会关闭。现在,把电机终端都布置成一个垂直的列阵,并按住电动钳。说明的背面显示如何装上驱动臂,并对齿轮箱的使用给出一些提示。齿轮箱上有一个额外的弹性圆柱销和两个额外的3毫米垫圈。如果有一些小的垫圈,它们可用在机械螺钉上,以把齿轮箱连接在一起。在输出端产生的扭矩足够损坏机器(最多6千克-厘米),因此,要确保输出臂可以自由旋转。机器使用的是拥有变电压和电流限制标准实验室直流电源,但也可以使用干电池。对于D电池来说,1安培的电流都是高负荷的,因此要提供充足有效的电源供应。说明书明确告知不能超过4.5V,这是个好建议。拥有400:1的减量后,无论输出负载怎么样,电机都能够自由运行。齿轮箱在第一次测试的时候运行良好。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论